Spherical coordinates - three dimensional space, Mathematics

Assignment Help:

Spherical Coordinates - Three Dimensional Space

In this part we will introduce spherical coordinates. Spherical coordinates which can take a little getting employed to.  It's possibly easiest to start things off along with a diagram.

1616_Spherical Coordinates - Three Dimensional Space.png

Spherical coordinates contains the following three quantities.

1st there is ρ.  This is the distance from the origin to the point and we will need ρ ≥ 0 . After that there is θ.  This is similar angle that we saw in polar/cylindrical coordinates.  It is the angle in between the positive x-axis and the line above represented by r (that is as well the same r as in polar or cylindrical coordinates). There are not any type of restrictions on θ.

At last there is Φ.  This is the angle in between the positive z-axis and the line from the origin to the point. We will need 0 ≤ Φ ≤ Π.

In brief, ρ is the distance from the origin to the point, Φ is the angle which we require to rotate down from the positive z-axis to obtain to the point and θ is how much we require to rotate around the z-axis to get to the point.

We should first derive a few conversion formulas. Let's first start along with a point in spherical coordinates and ask over what the cylindrical coordinates of the point are. Thus, we know (ρ, θ, Φ)and wish to find ( r, θ, z).  Actually, we really only require to find r and z since θ is similar in both coordinate systems.

We will be capable to do all of our work by looking at the right triangle displayed above in our sketch. Along with a little geometry we see that the angle in between z and ρ is Φ and thus we can see that, z = ρ cos Φ

r = ρ sin Φ

and these are just the formulas that we were looking for. Thus, given a point in spherical coordinates the cylindrical coordinates of the point will be,

r = ρ sin Φ

θ = θ

z = ρ cos Φ

Notice: as well that,

Or,

r2 + z2 = ρ2 cos2 Φ + ρ2 sin2 Φ = ρ2 (cos2 Φ + sin2 Φ) = ρ2

or

ρ2 = r2 + z2


Related Discussions:- Spherical coordinates - three dimensional space

What is the purpose of the reparameterisation, We have independent observat...

We have independent observations Xi, for i = 1, . . . , n, from a mixture of m Poisson distributions with component probabilities d c and rates l c, for c = 1, . . . ,m. We decid

Some important issue of graph, Some important issue of graph Before mov...

Some important issue of graph Before moving on to the next example, there are some important things to note. Firstly, in almost all problems a graph is pretty much needed.

Finding absolute extrema of f(x) on [a, Finding Absolute Extrema of f(x) on...

Finding Absolute Extrema of f(x) on [a,b] 0.   Confirm that the function is continuous on the interval [a,b]. 1.  Determine all critical points of f(x) which are in the inte

Geometry, A closed conical vessel of radius 36 cm and height 60 cm, has som...

A closed conical vessel of radius 36 cm and height 60 cm, has some water. When vertex is down then the height of water is 12 cm. What is the height of water when vertex is up?

Explain angle pairs, Explain angle pairs ? Adjacent angle pairs Two an...

Explain angle pairs ? Adjacent angle pairs Two angles are adjacent if they: 1. Have the same vertex. 2. Share a common side. 3. Have no interior points in common. Definit

5th grade, 6 and 3/8 minus 1 and 3/4

6 and 3/8 minus 1 and 3/4

Find solution to an equation or inequality, Illustrates that each of the fo...

Illustrates that each of the following numbers are solutions to the following equation or inequality. (a) x = 3 in x 2 - 9 = 0 (b) y = 8 in 3( y + 1) = 4 y - 5 Solution

Illustrate pythagorean theorem, Q. Illustrate Pythagorean Theorem? Ans...

Q. Illustrate Pythagorean Theorem? Ans. You have definitely seen the Pythagorean Theorem before, so a 2 + b 2 = c 2 should look familiar to you. The Pythagorean Theor

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd