Spherical coordinates - three dimensional space, Mathematics

Assignment Help:

Spherical Coordinates - Three Dimensional Space

In this part we will introduce spherical coordinates. Spherical coordinates which can take a little getting employed to.  It's possibly easiest to start things off along with a diagram.

1616_Spherical Coordinates - Three Dimensional Space.png

Spherical coordinates contains the following three quantities.

1st there is ρ.  This is the distance from the origin to the point and we will need ρ ≥ 0 . After that there is θ.  This is similar angle that we saw in polar/cylindrical coordinates.  It is the angle in between the positive x-axis and the line above represented by r (that is as well the same r as in polar or cylindrical coordinates). There are not any type of restrictions on θ.

At last there is Φ.  This is the angle in between the positive z-axis and the line from the origin to the point. We will need 0 ≤ Φ ≤ Π.

In brief, ρ is the distance from the origin to the point, Φ is the angle which we require to rotate down from the positive z-axis to obtain to the point and θ is how much we require to rotate around the z-axis to get to the point.

We should first derive a few conversion formulas. Let's first start along with a point in spherical coordinates and ask over what the cylindrical coordinates of the point are. Thus, we know (ρ, θ, Φ)and wish to find ( r, θ, z).  Actually, we really only require to find r and z since θ is similar in both coordinate systems.

We will be capable to do all of our work by looking at the right triangle displayed above in our sketch. Along with a little geometry we see that the angle in between z and ρ is Φ and thus we can see that, z = ρ cos Φ

r = ρ sin Φ

and these are just the formulas that we were looking for. Thus, given a point in spherical coordinates the cylindrical coordinates of the point will be,

r = ρ sin Φ

θ = θ

z = ρ cos Φ

Notice: as well that,

Or,

r2 + z2 = ρ2 cos2 Φ + ρ2 sin2 Φ = ρ2 (cos2 Φ + sin2 Φ) = ρ2

or

ρ2 = r2 + z2


Related Discussions:- Spherical coordinates - three dimensional space

Parallel lines, Parallel to the line specified by 10 y + 3x= -2 In this...

Parallel to the line specified by 10 y + 3x= -2 In this case the new line is to be parallel to the line given by 10 y ? 3x ? -2 and so it have to have the similar slope as this

Method to solve binomials of second degree, In this part we look at a...

In this part we look at another method to obtain the factors of an expression. In the above you have seen that x 2 - 4x + 4 = (x - 2) 2 or (x - 2)(x - 2). If yo

Show that the height of the opposite house, From a window x meters hi...

From a window x meters high above the ground in a street, the angles of elevation and depression of the top and the foot of the other house on the opposite side of the street  are

Trignometry, prove that cos(a)/1-sin(a)=tan(45+A/2)

prove that cos(a)/1-sin(a)=tan(45+A/2)

Parallel and perpendicular lines, The last topic that we have to discuss in...

The last topic that we have to discuss in this section is that of parallel & perpendicular lines. Following is a sketch of parallel and perpendicular lines. Suppose that th

Geometry, the segments shown could form a triangle

the segments shown could form a triangle

Fermat''s theorem, Fermat's Theorem : If  f ( x ) contain a relative extre...

Fermat's Theorem : If  f ( x ) contain a relative extrema at x = c & f ′ (c ) exists then x = c is a critical point of f ( x ) . Actually, it will be a critical point such that f

Math on a spot, compare: 643,251: 633,512: 633,893. The answer is 633,512.

compare: 643,251: 633,512: 633,893. The answer is 633,512.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd