Spherical coordinates - three dimensional space, Mathematics

Assignment Help:

Spherical Coordinates - Three Dimensional Space

In this part we will introduce spherical coordinates. Spherical coordinates which can take a little getting employed to.  It's possibly easiest to start things off along with a diagram.

1616_Spherical Coordinates - Three Dimensional Space.png

Spherical coordinates contains the following three quantities.

1st there is ρ.  This is the distance from the origin to the point and we will need ρ ≥ 0 . After that there is θ.  This is similar angle that we saw in polar/cylindrical coordinates.  It is the angle in between the positive x-axis and the line above represented by r (that is as well the same r as in polar or cylindrical coordinates). There are not any type of restrictions on θ.

At last there is Φ.  This is the angle in between the positive z-axis and the line from the origin to the point. We will need 0 ≤ Φ ≤ Π.

In brief, ρ is the distance from the origin to the point, Φ is the angle which we require to rotate down from the positive z-axis to obtain to the point and θ is how much we require to rotate around the z-axis to get to the point.

We should first derive a few conversion formulas. Let's first start along with a point in spherical coordinates and ask over what the cylindrical coordinates of the point are. Thus, we know (ρ, θ, Φ)and wish to find ( r, θ, z).  Actually, we really only require to find r and z since θ is similar in both coordinate systems.

We will be capable to do all of our work by looking at the right triangle displayed above in our sketch. Along with a little geometry we see that the angle in between z and ρ is Φ and thus we can see that, z = ρ cos Φ

r = ρ sin Φ

and these are just the formulas that we were looking for. Thus, given a point in spherical coordinates the cylindrical coordinates of the point will be,

r = ρ sin Φ

θ = θ

z = ρ cos Φ

Notice: as well that,

Or,

r2 + z2 = ρ2 cos2 Φ + ρ2 sin2 Φ = ρ2 (cos2 Φ + sin2 Φ) = ρ2

or

ρ2 = r2 + z2


Related Discussions:- Spherical coordinates - three dimensional space

Intervals of validity, I've termed this section as Intervals of Validity si...

I've termed this section as Intervals of Validity since all of the illustrations will involve them. Though, there is many more to this section. We will notice a couple of theorems

Determining Proportionality, Assume Jim had executed 15 "Splits" before his...

Assume Jim had executed 15 "Splits" before his last split of 20 seconds. If his eventual time in the road race is 4:05, what was the average time for one of his earlier splits?

Initial conditions to find system of equations, Solve the subsequent IVP. ...

Solve the subsequent IVP. y′′ + 11y′ + 24 y = 0 y (0) =0  y′ (0)=-7  Solution The characteristic equation is as r 2 +11r + 24 = 0 ( r + 8) ( r + 3) = 0

What is universal set, A non-empty set or group of which all the sets under...

A non-empty set or group of which all the sets under concern are subsets is known as the universal set. In any part of application of set theory, all the sets under concern might l

Determine differential equation from direction field, Thus, just why do we ...

Thus, just why do we care regarding direction fields? Two nice pieces of information are there which can be readily determined from the direction field for a differential equation.

Limits, lim(x->0) xln²(xln(x))

lim(x->0) xln²(xln(x))

Ogive, How many types of ogives?

How many types of ogives?

Find a power series representation for the function, Find a power series re...

Find a power series representation for the subsequent function and find out its interval of convergence. g (x) = 1/1+x 3 Solution What we require to do here is to rela

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd