Speaking mathematically-how do children learn?, Mathematics

Assignment Help:

Speaking Mathematically :  A Class 2 teacher was explaining the concept of place value to his students, using the number eleven. He started by saying "One and one make eleven." Some of the children, who had till now learnt that one and one actually make two, were thoroughly confused. Why did this confusion arise? Could it be because of the language used?

Clearly, language is needed for conveying mathematical notions to children. Also, language itself is something that children are trying to master. Hence, in learning mathematics, children have to cope with trying to understand language as well as mathematics. And therefore, when you find that a child is not able to understand a particular mathematical concept, it may just be due to confusion created by the language used for explaining the concept.

E1) Give some examples, from your experiences, of confusion arising in a child's understanding of mathematical concepts because of language interference.

Sometimes children coming from certain backgrounds may not be familiar with some words that are used in the textbooks and by the teachers. For example, not knowing the meanings of terms such as 'shorter', 'wide', 'same', 'different', 'few', 'as many as', 'equal to', 'each', etc., can obstruct their understanding of mathematics. Another source of confusion is when many different words express the same mathematical concept. For example, 'equals', 'makes' and 'is the same as' are all represented by the sign '='.

Even older children often have to face this kind of problem. This is because the language used in conveying mathematical ideas at any level places heavy demands on the children's ability to comprehend language. Getting children to talk about the mathematics that they are doing helps them to tackle this problem, and to learn the language of mathematics.

At another level, children can be confused by the grammatical complexity and sentence length of a word problem. For example, the question "What number between 25 and 30 cannot be divided exactly by 2 or 3?" is indeed complex.

Wouldn't a child find it easier to understand if it were reworded as "Look for a number between 25 and 30. You cannot divide this number exactly by 2 or by 3.

What is the number?"?

Doing the following exercise may give you some more insight into the importance of using language that a child is familiar with.

E2) Identify the different ways in which you can explain the following mathematical problem to a Class 2 child and to a Class 4 child.  Why is one-fourth less than one-half?

Observe the language you use.

And finally, a point to keep in mind about the learning environment, that holds for any of us, child or adult.


Related Discussions:- Speaking mathematically-how do children learn?

Example to understand division means, My nephew had been introduced to divi...

My nephew had been introduced to division by his teacher Ms. Santosh, in Class 3. He, and several of his friends who had been taught by her, appeared to be quite comfortable with t

Grouping-categories of situations requiring division , Grouping - situatio...

Grouping - situations in which we need to find the number of portions of a given size which can be obtained from a given quantity. (e.g., if there are 50 children in a class and t

Word problem, mark got 15.00 for his birthday he now has 27.00. how much di...

mark got 15.00 for his birthday he now has 27.00. how much did he start with

Show that cos12+cos60+cos84=cos24+cos48 , L.H.S. =cos 12+cos 60+cos 84 =c...

L.H.S. =cos 12+cos 60+cos 84 =cos 12+(cos 84+cos 60) =cos 12+2.cos 72 . cos 12 =(1+2sin 18)cos 12 =(1+2.(√5 -1)/4)cos 12 =(1+.(√5 -1)/2)cos 12 =(√5 +1)/2.cos 12   R.H.S =c

Principle of superposition, If y 1 (t) and y 2 (t) are two solutions to a...

If y 1 (t) and y 2 (t) are two solutions to a linear, homogeneous differential equation thus it is y (t ) = c 1 y 1 (t ) + c 2 y 2 (t )   ........................(3) Remem

Applications of series - differential equations, Series Solutions to Differ...

Series Solutions to Differential Equations Here now that we know how to illustrate function as power series we can now talk about at least some applications of series. There ar

Understand the terms quotient and remainder, What other activities can you ...

What other activities can you suggest to help a child understand the terms 'quotient' and 'remainder'? Once children understand the concept and process of division, with enough

Determine the number of combinations, 3 items x, y and z will have 6 differ...

3 items x, y and z will have 6 different permutations however only one combination. The given formular is generally used to determine the number of combinations in a described situ

Trignometry, whta are the formulas needed for proving in trignometry .

whta are the formulas needed for proving in trignometry .

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd