Sparse metrics, Data Structure & Algorithms

Assignment Help:

Q. Define the sparse metrics and also explain the representation of a 4X4 matrix using linked list.        

Ans:

A matrix in which number of zero entries is quite higher than the number of non zero entries is called the sparse matrix. The natural method or technoque of expressing matrices in memory as two-dimensional arrays may not be appropriate for sparse matrices. One can save the space by storing only nonzero entries. For example matrix A (3*3 matrix) which is represented below

 

0    2      0

5   0     0

0   6     9

can be written in sparse matrix form as:

3   3     4

0    1      2

1   0   5

2   2   6

2   3   9

In this the first row represent the dimension of matrix and last column tells us about the total number of non zero values; from the second row onwards it is giving the location and value of non zero number.

Representation of a 4*4 matrix using linked list is given below:

#define MAX1 4

#define MAX2 4

struct cheadnode           /* structure for col

headnode */

{

int colno ;

struct node *down ;

struct cheadnode *next ;

} ;

struct rheadnode          /* structure for row

headnode */

{

int rowno ;

struct node * right ;

struct rheadnode *next ;

} ;

struct node                  /* structure for node to

store element */

{

int row ; int col ; int val ;

struct node *right ;

struct node *down ;

} ;

struct spmat                /* structure for special headnode */

{

struct rheadnode *firstrow ; struct cheadnode *firstcol ; int noofrows ;

int noofcols ;

} ;

struct sparse

{

int *sp ;

int row  ;

struct spmat *smat ;

struct cheadnode *chead[MAX2] ; struct rheadnode *rhead[MAX1] ; struct node *nd ;

} ;

void initsparse ( struct sparse *p )           /*

initializes structure elements */

{

int i ;

for ( i = 0 ; i < MAX1 ; i++ )            /* create row headnodes */

p -> rhead[i] = ( struct rheadnode * ) malloc (

sizeof ( struct rheadnode ) ) ;

for ( i = 0 ; i < MAX1 - 1 ; i++ ) /* initialize and

link row headnodes together */

{

p -> rhead[i] -> next = p -> rhead[i + 1] ;

p -> rhead[i] -> right = NULL ;

p -> rhead[i] -> rowno = i ;

}

p -> rhead[i] -> right = NULL ;

p -> rhead[i] -> next = NULL ;

for ( i = 0 ; i < MAX1 ; i++ )          /* create col headnodes */

p -> chead[i] = ( struct cheadnode * ) malloc (

sizeof ( struct cheadnode ) ) ;

for ( i = 0 ; i < MAX2 - 1 ; i++ )               /*

initialize and link col headnodes together */

{

p -> chead[i] -> next = p -> chead[i + 1] ;

p -> chead[i] -> down = NULL ;

p -> chead[i] -> colno = i ;

}

p -> chead[i] -> down = NULL ;

p -> chead[i] -> next = NULL ;

/* create and initialize special headnode */

p -> smat = ( struct spmat * ) malloc ( sizeof (

struct spmat ) ) ;

p -> smat -> firstcol = p -> chead[0] ;

p -> smat -> firstrow = p -> rhead[0] ;

p -> smat -> noofcols = MAX2 ;

p -> smat -> noofrows = MAX1 ;

}

void create_array ( struct sparse *p )    /* creates, dynamically the matrix of size MAX1 x MAX2 */

{

int n, i ;

p -> sp = ( int * ) malloc ( MAX1 * MAX2 * sizeof (

int ) ) ;

for ( i = 0 ; i < MAX1 * MAX2 ; i++ )        /*

get the element and store it */

{

printf ( "Enter element no. %d:", i ) ;

scanf ( "%d", &n ) ;

* ( p -> sp + i ) = n ;

}

}


Related Discussions:- Sparse metrics

Data searching, In file access: what is the difference between serial, seq...

In file access: what is the difference between serial, sequential and indexed sequential searching

Sort list of distinct numbers in ascending order - quicksort, (1) Sort a li...

(1) Sort a list of distinct numbers in ascending order, using the following divide- and-conquer strategy (Quicksort): divide the list of numbers into two lists: one that contains a

Question, A binary search tree is used to locate the number 43. Which of th...

A binary search tree is used to locate the number 43. Which of the following probe sequences are possible and which are not? Explain. (a) 61 52 14 17 40 43 (b) 2 3 50 40 60 43 (c)

Technique for direct search, Technique for direct search is    Hashing ...

Technique for direct search is    Hashing is the used for direct search.

Logic circuits, the voltage wave forms are applied at the inputs of an EX-O...

the voltage wave forms are applied at the inputs of an EX-OR gate. determine the output wave form

Best case, Best Case: If the list is sorted already then A[i] T (n) = ...

Best Case: If the list is sorted already then A[i] T (n) = c1n + c2 (n -1) + c3(n -1) + c4 (n -1)  = O (n), which indicates that the time complexity is linear. Worst Case:

Direct file organisation, It offers an effective way to organize data while...

It offers an effective way to organize data while there is a requirement to access individual records directly. To access a record directly (or random access) a relationship is

Dqueue, how can i delete from deque while deletion is restricted from one e...

how can i delete from deque while deletion is restricted from one end

Search on a heap file, Consider the file " search_2013 ". This is a text fi...

Consider the file " search_2013 ". This is a text file containingsearch key values; each entry is a particular ID (in the schema given above). You are tosimulate searching over a h

Depth of complete binary tree, What will be depth do , of complete binary t...

What will be depth do , of complete binary tree of n nodes, where nodes are labelled from 1 to n with root as node and last leaf node as node n

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd