Sparse metrics, Data Structure & Algorithms

Assignment Help:

Q. Define the sparse metrics and also explain the representation of a 4X4 matrix using linked list.        

Ans:

A matrix in which number of zero entries is quite higher than the number of non zero entries is called the sparse matrix. The natural method or technoque of expressing matrices in memory as two-dimensional arrays may not be appropriate for sparse matrices. One can save the space by storing only nonzero entries. For example matrix A (3*3 matrix) which is represented below

 

0    2      0

5   0     0

0   6     9

can be written in sparse matrix form as:

3   3     4

0    1      2

1   0   5

2   2   6

2   3   9

In this the first row represent the dimension of matrix and last column tells us about the total number of non zero values; from the second row onwards it is giving the location and value of non zero number.

Representation of a 4*4 matrix using linked list is given below:

#define MAX1 4

#define MAX2 4

struct cheadnode           /* structure for col

headnode */

{

int colno ;

struct node *down ;

struct cheadnode *next ;

} ;

struct rheadnode          /* structure for row

headnode */

{

int rowno ;

struct node * right ;

struct rheadnode *next ;

} ;

struct node                  /* structure for node to

store element */

{

int row ; int col ; int val ;

struct node *right ;

struct node *down ;

} ;

struct spmat                /* structure for special headnode */

{

struct rheadnode *firstrow ; struct cheadnode *firstcol ; int noofrows ;

int noofcols ;

} ;

struct sparse

{

int *sp ;

int row  ;

struct spmat *smat ;

struct cheadnode *chead[MAX2] ; struct rheadnode *rhead[MAX1] ; struct node *nd ;

} ;

void initsparse ( struct sparse *p )           /*

initializes structure elements */

{

int i ;

for ( i = 0 ; i < MAX1 ; i++ )            /* create row headnodes */

p -> rhead[i] = ( struct rheadnode * ) malloc (

sizeof ( struct rheadnode ) ) ;

for ( i = 0 ; i < MAX1 - 1 ; i++ ) /* initialize and

link row headnodes together */

{

p -> rhead[i] -> next = p -> rhead[i + 1] ;

p -> rhead[i] -> right = NULL ;

p -> rhead[i] -> rowno = i ;

}

p -> rhead[i] -> right = NULL ;

p -> rhead[i] -> next = NULL ;

for ( i = 0 ; i < MAX1 ; i++ )          /* create col headnodes */

p -> chead[i] = ( struct cheadnode * ) malloc (

sizeof ( struct cheadnode ) ) ;

for ( i = 0 ; i < MAX2 - 1 ; i++ )               /*

initialize and link col headnodes together */

{

p -> chead[i] -> next = p -> chead[i + 1] ;

p -> chead[i] -> down = NULL ;

p -> chead[i] -> colno = i ;

}

p -> chead[i] -> down = NULL ;

p -> chead[i] -> next = NULL ;

/* create and initialize special headnode */

p -> smat = ( struct spmat * ) malloc ( sizeof (

struct spmat ) ) ;

p -> smat -> firstcol = p -> chead[0] ;

p -> smat -> firstrow = p -> rhead[0] ;

p -> smat -> noofcols = MAX2 ;

p -> smat -> noofrows = MAX1 ;

}

void create_array ( struct sparse *p )    /* creates, dynamically the matrix of size MAX1 x MAX2 */

{

int n, i ;

p -> sp = ( int * ) malloc ( MAX1 * MAX2 * sizeof (

int ) ) ;

for ( i = 0 ; i < MAX1 * MAX2 ; i++ )        /*

get the element and store it */

{

printf ( "Enter element no. %d:", i ) ;

scanf ( "%d", &n ) ;

* ( p -> sp + i ) = n ;

}

}


Related Discussions:- Sparse metrics

Queue, 1. Show the effect of each of the following operations on queue q. A...

1. Show the effect of each of the following operations on queue q. Assume that y (type Character) contains the character ‘&’. What are the final values of x and success (type boole

Data structure arrays, In this unit, we learned the data structure arrays f...

In this unit, we learned the data structure arrays from the application point of view and representation point of view. Two applications that are representation of a sparse matrix

Disadvantages of the lifo costing method, The disadvantages or limitations ...

The disadvantages or limitations of the last in first out costing method are: The election of last in first out for income tax purposes is binding for all subsequent yea

Explain the term - branching, Explain the term - Branching There are t...

Explain the term - Branching There are two common ways of branching: case of ..... otherwise ...... endcase  if ..... then ..... else ..... endif   case of

Postfix expression, : Write an algorithm to evaluate a postfix expression. ...

: Write an algorithm to evaluate a postfix expression. Execute your algorithm using the following postfix expression as your input: a b + c d +*f ­ .

Method to add an element in circular queue, Q. Let us consider a queue is h...

Q. Let us consider a queue is housed in an array in circular fashion or trend. It is required to add new items to the queue. Write down a method ENQ to achieve this also check whet

Data Structure, Ask consider the file name cars.text each line in the file ...

Ask consider the file name cars.text each line in the file contains information about a car ( year,company,manufacture,model name,type) 1-read the file 2-add each car which is repr

Explain the scan-line algorithm, Explain the Scan-Line Algorithm This i...

Explain the Scan-Line Algorithm This image-space method for removing hidden surfaces is an extension of the scan-line algorithm for filling polygon interiors. Instead of fillin

Algorithm, Example of worse case of time

Example of worse case of time

Efficient way of storing two symmetric matrices, Explain an efficient way o...

Explain an efficient way of storing two symmetric matrices of the same order in memory. A n-square matrix array is said to be symmetric if a[j][k]=a[k][j] for all j and k. For

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd