Sparse metrics, Data Structure & Algorithms

Assignment Help:

Q. Define the sparse metrics and also explain the representation of a 4X4 matrix using linked list.        

Ans:

A matrix in which number of zero entries is quite higher than the number of non zero entries is called the sparse matrix. The natural method or technoque of expressing matrices in memory as two-dimensional arrays may not be appropriate for sparse matrices. One can save the space by storing only nonzero entries. For example matrix A (3*3 matrix) which is represented below

 

0    2      0

5   0     0

0   6     9

can be written in sparse matrix form as:

3   3     4

0    1      2

1   0   5

2   2   6

2   3   9

In this the first row represent the dimension of matrix and last column tells us about the total number of non zero values; from the second row onwards it is giving the location and value of non zero number.

Representation of a 4*4 matrix using linked list is given below:

#define MAX1 4

#define MAX2 4

struct cheadnode           /* structure for col

headnode */

{

int colno ;

struct node *down ;

struct cheadnode *next ;

} ;

struct rheadnode          /* structure for row

headnode */

{

int rowno ;

struct node * right ;

struct rheadnode *next ;

} ;

struct node                  /* structure for node to

store element */

{

int row ; int col ; int val ;

struct node *right ;

struct node *down ;

} ;

struct spmat                /* structure for special headnode */

{

struct rheadnode *firstrow ; struct cheadnode *firstcol ; int noofrows ;

int noofcols ;

} ;

struct sparse

{

int *sp ;

int row  ;

struct spmat *smat ;

struct cheadnode *chead[MAX2] ; struct rheadnode *rhead[MAX1] ; struct node *nd ;

} ;

void initsparse ( struct sparse *p )           /*

initializes structure elements */

{

int i ;

for ( i = 0 ; i < MAX1 ; i++ )            /* create row headnodes */

p -> rhead[i] = ( struct rheadnode * ) malloc (

sizeof ( struct rheadnode ) ) ;

for ( i = 0 ; i < MAX1 - 1 ; i++ ) /* initialize and

link row headnodes together */

{

p -> rhead[i] -> next = p -> rhead[i + 1] ;

p -> rhead[i] -> right = NULL ;

p -> rhead[i] -> rowno = i ;

}

p -> rhead[i] -> right = NULL ;

p -> rhead[i] -> next = NULL ;

for ( i = 0 ; i < MAX1 ; i++ )          /* create col headnodes */

p -> chead[i] = ( struct cheadnode * ) malloc (

sizeof ( struct cheadnode ) ) ;

for ( i = 0 ; i < MAX2 - 1 ; i++ )               /*

initialize and link col headnodes together */

{

p -> chead[i] -> next = p -> chead[i + 1] ;

p -> chead[i] -> down = NULL ;

p -> chead[i] -> colno = i ;

}

p -> chead[i] -> down = NULL ;

p -> chead[i] -> next = NULL ;

/* create and initialize special headnode */

p -> smat = ( struct spmat * ) malloc ( sizeof (

struct spmat ) ) ;

p -> smat -> firstcol = p -> chead[0] ;

p -> smat -> firstrow = p -> rhead[0] ;

p -> smat -> noofcols = MAX2 ;

p -> smat -> noofrows = MAX1 ;

}

void create_array ( struct sparse *p )    /* creates, dynamically the matrix of size MAX1 x MAX2 */

{

int n, i ;

p -> sp = ( int * ) malloc ( MAX1 * MAX2 * sizeof (

int ) ) ;

for ( i = 0 ; i < MAX1 * MAX2 ; i++ )        /*

get the element and store it */

{

printf ( "Enter element no. %d:", i ) ;

scanf ( "%d", &n ) ;

* ( p -> sp + i ) = n ;

}

}


Related Discussions:- Sparse metrics

Determine the class invariants- ruby, Determine the class invariants- Ruby ...

Determine the class invariants- Ruby Ruby has many predefined exceptions classes (like ArgumentError) and new ones can be created easily by sub-classing StandardError, so it's

A tree having ''m'' nodes has (m-1) branches. prove., Q. Prove the hypothes...

Q. Prove the hypothesis that "A tree having 'm' nodes has exactly (m-1) branches".      Ans: A tree having m number of nodes has exactly (m-1) branches Proof: A root

The various ways in which lc code can be accessed, Problem Your LC code...

Problem Your LC code is stored in a memory location as shown and the variable name is LC                  LC Memory address       Content(LC code)

Exlain double linked list, Double Linked List In a doubly linked list, ...

Double Linked List In a doubly linked list, also known as 2 way lists, each node is separated into 3 parts. The first part is called last pointer field. It has the address of t

Analysis of algorithms, A common person's faith is that a computer can do a...

A common person's faith is that a computer can do anything. It is far from truth. In realism computer can carry out only definite predefined instructions. The formal illustration o

Algorithm of binary search, Step 1: Declare array 'k' of size 'n' i.e. k(n)...

Step 1: Declare array 'k' of size 'n' i.e. k(n) is an array which stores all the keys of a file containing 'n' records Step 2: i←0 Step 3: low←0, high←n-1 Step 4: while (l

Construct a minimum spanning tree, Construct G for α, n, and W given as com...

Construct G for α, n, and W given as command line parameters. Throw away edges that have an asymmetric relation between nodes. That is, if A is connected to B, but B is not connect

Binary trees, A binary tree is a special tree where each non-leaf node can ...

A binary tree is a special tree where each non-leaf node can have atmost two child nodes. Most important types of trees which are used to model yes/no, on/off, higher/lower, i.e.,

Hashing, what is hashing? what are diffrent method of hashing?

what is hashing? what are diffrent method of hashing?

Abstract data type-list, It is a useful tool for indicating the logical pro...

It is a useful tool for indicating the logical properties of data type. It is a collection of values & a set of operations on those values. Methodically, "a TYPE is a set, & elemen

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd