Sparse metrics, Data Structure & Algorithms

Assignment Help:

Q. Define the sparse metrics and also explain the representation of a 4X4 matrix using linked list.        

Ans:

A matrix in which number of zero entries is quite higher than the number of non zero entries is called the sparse matrix. The natural method or technoque of expressing matrices in memory as two-dimensional arrays may not be appropriate for sparse matrices. One can save the space by storing only nonzero entries. For example matrix A (3*3 matrix) which is represented below

 

0    2      0

5   0     0

0   6     9

can be written in sparse matrix form as:

3   3     4

0    1      2

1   0   5

2   2   6

2   3   9

In this the first row represent the dimension of matrix and last column tells us about the total number of non zero values; from the second row onwards it is giving the location and value of non zero number.

Representation of a 4*4 matrix using linked list is given below:

#define MAX1 4

#define MAX2 4

struct cheadnode           /* structure for col

headnode */

{

int colno ;

struct node *down ;

struct cheadnode *next ;

} ;

struct rheadnode          /* structure for row

headnode */

{

int rowno ;

struct node * right ;

struct rheadnode *next ;

} ;

struct node                  /* structure for node to

store element */

{

int row ; int col ; int val ;

struct node *right ;

struct node *down ;

} ;

struct spmat                /* structure for special headnode */

{

struct rheadnode *firstrow ; struct cheadnode *firstcol ; int noofrows ;

int noofcols ;

} ;

struct sparse

{

int *sp ;

int row  ;

struct spmat *smat ;

struct cheadnode *chead[MAX2] ; struct rheadnode *rhead[MAX1] ; struct node *nd ;

} ;

void initsparse ( struct sparse *p )           /*

initializes structure elements */

{

int i ;

for ( i = 0 ; i < MAX1 ; i++ )            /* create row headnodes */

p -> rhead[i] = ( struct rheadnode * ) malloc (

sizeof ( struct rheadnode ) ) ;

for ( i = 0 ; i < MAX1 - 1 ; i++ ) /* initialize and

link row headnodes together */

{

p -> rhead[i] -> next = p -> rhead[i + 1] ;

p -> rhead[i] -> right = NULL ;

p -> rhead[i] -> rowno = i ;

}

p -> rhead[i] -> right = NULL ;

p -> rhead[i] -> next = NULL ;

for ( i = 0 ; i < MAX1 ; i++ )          /* create col headnodes */

p -> chead[i] = ( struct cheadnode * ) malloc (

sizeof ( struct cheadnode ) ) ;

for ( i = 0 ; i < MAX2 - 1 ; i++ )               /*

initialize and link col headnodes together */

{

p -> chead[i] -> next = p -> chead[i + 1] ;

p -> chead[i] -> down = NULL ;

p -> chead[i] -> colno = i ;

}

p -> chead[i] -> down = NULL ;

p -> chead[i] -> next = NULL ;

/* create and initialize special headnode */

p -> smat = ( struct spmat * ) malloc ( sizeof (

struct spmat ) ) ;

p -> smat -> firstcol = p -> chead[0] ;

p -> smat -> firstrow = p -> rhead[0] ;

p -> smat -> noofcols = MAX2 ;

p -> smat -> noofrows = MAX1 ;

}

void create_array ( struct sparse *p )    /* creates, dynamically the matrix of size MAX1 x MAX2 */

{

int n, i ;

p -> sp = ( int * ) malloc ( MAX1 * MAX2 * sizeof (

int ) ) ;

for ( i = 0 ; i < MAX1 * MAX2 ; i++ )        /*

get the element and store it */

{

printf ( "Enter element no. %d:", i ) ;

scanf ( "%d", &n ) ;

* ( p -> sp + i ) = n ;

}

}


Related Discussions:- Sparse metrics

Determine in brief the painter algorithm, Determine in brief the Painter A...

Determine in brief the Painter Algorithm a) The farthest polygon, namely the rectangle PQRS, is stored first. (b) The next farthest, the quadrilateral ABCD, is superpo

Explain the halting problem, Explain the halting problem Given a comput...

Explain the halting problem Given a computer program and an input to it, verify whether the program will halt on that input or continue working indefinitely on it.

Stack, Explain the array and linked list implementation of stack

Explain the array and linked list implementation of stack

Explain about the structured types - built-in types, Explain about the Stru...

Explain about the Structured types - Built-In Types Values of the carrier set are not atomic, consisting rather than several atomic values arranged in some way. Common illu

How will you represent a max-heap sequentially, How will you represent a ma...

How will you represent a max-heap sequentially? Max heap, also known as the descending heap, of size n is an almost complete binary tree of n nodes such that the content of eve

Registers, what are registers? why we need register? Definition? Types? Wha...

what are registers? why we need register? Definition? Types? What registers can do for us?

Procedures, what is far and near procedures in system programming?

what is far and near procedures in system programming?

Algorithmic implementation of multiple stacks, So far, we now have been con...

So far, we now have been concerned only with the representation of single stack. What happens while a data representation is required for several stacks? Let us consider an array X

Data structure- tree, Tree is dynamic data structures. Trees can expand & c...

Tree is dynamic data structures. Trees can expand & contract as the program executes and are implemented via pointers. A tree deallocates memory whereas an element is deleted.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd