Sparse metrics, Data Structure & Algorithms

Assignment Help:

Q. Define the sparse metrics and also explain the representation of a 4X4 matrix using linked list.        

Ans:

A matrix in which number of zero entries is quite higher than the number of non zero entries is called the sparse matrix. The natural method or technoque of expressing matrices in memory as two-dimensional arrays may not be appropriate for sparse matrices. One can save the space by storing only nonzero entries. For example matrix A (3*3 matrix) which is represented below

 

0    2      0

5   0     0

0   6     9

can be written in sparse matrix form as:

3   3     4

0    1      2

1   0   5

2   2   6

2   3   9

In this the first row represent the dimension of matrix and last column tells us about the total number of non zero values; from the second row onwards it is giving the location and value of non zero number.

Representation of a 4*4 matrix using linked list is given below:

#define MAX1 4

#define MAX2 4

struct cheadnode           /* structure for col

headnode */

{

int colno ;

struct node *down ;

struct cheadnode *next ;

} ;

struct rheadnode          /* structure for row

headnode */

{

int rowno ;

struct node * right ;

struct rheadnode *next ;

} ;

struct node                  /* structure for node to

store element */

{

int row ; int col ; int val ;

struct node *right ;

struct node *down ;

} ;

struct spmat                /* structure for special headnode */

{

struct rheadnode *firstrow ; struct cheadnode *firstcol ; int noofrows ;

int noofcols ;

} ;

struct sparse

{

int *sp ;

int row  ;

struct spmat *smat ;

struct cheadnode *chead[MAX2] ; struct rheadnode *rhead[MAX1] ; struct node *nd ;

} ;

void initsparse ( struct sparse *p )           /*

initializes structure elements */

{

int i ;

for ( i = 0 ; i < MAX1 ; i++ )            /* create row headnodes */

p -> rhead[i] = ( struct rheadnode * ) malloc (

sizeof ( struct rheadnode ) ) ;

for ( i = 0 ; i < MAX1 - 1 ; i++ ) /* initialize and

link row headnodes together */

{

p -> rhead[i] -> next = p -> rhead[i + 1] ;

p -> rhead[i] -> right = NULL ;

p -> rhead[i] -> rowno = i ;

}

p -> rhead[i] -> right = NULL ;

p -> rhead[i] -> next = NULL ;

for ( i = 0 ; i < MAX1 ; i++ )          /* create col headnodes */

p -> chead[i] = ( struct cheadnode * ) malloc (

sizeof ( struct cheadnode ) ) ;

for ( i = 0 ; i < MAX2 - 1 ; i++ )               /*

initialize and link col headnodes together */

{

p -> chead[i] -> next = p -> chead[i + 1] ;

p -> chead[i] -> down = NULL ;

p -> chead[i] -> colno = i ;

}

p -> chead[i] -> down = NULL ;

p -> chead[i] -> next = NULL ;

/* create and initialize special headnode */

p -> smat = ( struct spmat * ) malloc ( sizeof (

struct spmat ) ) ;

p -> smat -> firstcol = p -> chead[0] ;

p -> smat -> firstrow = p -> rhead[0] ;

p -> smat -> noofcols = MAX2 ;

p -> smat -> noofrows = MAX1 ;

}

void create_array ( struct sparse *p )    /* creates, dynamically the matrix of size MAX1 x MAX2 */

{

int n, i ;

p -> sp = ( int * ) malloc ( MAX1 * MAX2 * sizeof (

int ) ) ;

for ( i = 0 ; i < MAX1 * MAX2 ; i++ )        /*

get the element and store it */

{

printf ( "Enter element no. %d:", i ) ;

scanf ( "%d", &n ) ;

* ( p -> sp + i ) = n ;

}

}


Related Discussions:- Sparse metrics

Algorithm, Describe different methods of developing algorithms with example...

Describe different methods of developing algorithms with examples.

In-order traversal, Write steps for algorithm for In-order Traversal Th...

Write steps for algorithm for In-order Traversal This process when implemented iteratively also needs a stack and a Boolean to prevent the execution from traversing any portion

Algorithm and flow chart, algorithm and flow chart to find weather the give...

algorithm and flow chart to find weather the given numbers are positive or negative or neutral

Sequential files, Data records are stored in some particular sequence e.g.,...

Data records are stored in some particular sequence e.g., order of arrival value of key field etc. Records of sequential file cannot be randomly accessed i.e., to access the n th

Define min-heap, Define min-heap A min-heap is a complete binary tree i...

Define min-heap A min-heap is a complete binary tree in which each element is less than or equal to its children. All the principal properties of heaps remain valid for min-hea

STACK, 5. Implement a stack (write pseudo-code for STACK-EMPTY, PUSH, and P...

5. Implement a stack (write pseudo-code for STACK-EMPTY, PUSH, and POP) using a singly linked list L. The operations PUSH and POP should still take O(1) time.

Reverse order of elements on a slack, Q. Reverse the order of the elements ...

Q. Reverse the order of the elements on a stack S    (i) by using two additional stacks (ii) by using one additional queue. Ans :      L e t S be the stac

What is string, What is String Carrier set of the String ADT is the s...

What is String Carrier set of the String ADT is the set of all finite sequences of characters from some alphabet, including empty sequence (the empty string). Operations on s

Tree structure, We would like to implement a 2-4Tree containing distinct in...

We would like to implement a 2-4Tree containing distinct integer keys. This 2-4Tree is defined by the ArrayList Nodes of all the 2-4Nodes in the tree and the special 2-4Node Root w

What is class invariants assertion, What is Class invariants assertion ...

What is Class invariants assertion A class invariant is an assertion which should be true of any class instance before and after calls of its exported operations. Generally

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd