Sparse metrics, Data Structure & Algorithms

Assignment Help:

Q. Define the sparse metrics and also explain the representation of a 4X4 matrix using linked list.        

Ans:

A matrix in which number of zero entries is quite higher than the number of non zero entries is called the sparse matrix. The natural method or technoque of expressing matrices in memory as two-dimensional arrays may not be appropriate for sparse matrices. One can save the space by storing only nonzero entries. For example matrix A (3*3 matrix) which is represented below

 

0    2      0

5   0     0

0   6     9

can be written in sparse matrix form as:

3   3     4

0    1      2

1   0   5

2   2   6

2   3   9

In this the first row represent the dimension of matrix and last column tells us about the total number of non zero values; from the second row onwards it is giving the location and value of non zero number.

Representation of a 4*4 matrix using linked list is given below:

#define MAX1 4

#define MAX2 4

struct cheadnode           /* structure for col

headnode */

{

int colno ;

struct node *down ;

struct cheadnode *next ;

} ;

struct rheadnode          /* structure for row

headnode */

{

int rowno ;

struct node * right ;

struct rheadnode *next ;

} ;

struct node                  /* structure for node to

store element */

{

int row ; int col ; int val ;

struct node *right ;

struct node *down ;

} ;

struct spmat                /* structure for special headnode */

{

struct rheadnode *firstrow ; struct cheadnode *firstcol ; int noofrows ;

int noofcols ;

} ;

struct sparse

{

int *sp ;

int row  ;

struct spmat *smat ;

struct cheadnode *chead[MAX2] ; struct rheadnode *rhead[MAX1] ; struct node *nd ;

} ;

void initsparse ( struct sparse *p )           /*

initializes structure elements */

{

int i ;

for ( i = 0 ; i < MAX1 ; i++ )            /* create row headnodes */

p -> rhead[i] = ( struct rheadnode * ) malloc (

sizeof ( struct rheadnode ) ) ;

for ( i = 0 ; i < MAX1 - 1 ; i++ ) /* initialize and

link row headnodes together */

{

p -> rhead[i] -> next = p -> rhead[i + 1] ;

p -> rhead[i] -> right = NULL ;

p -> rhead[i] -> rowno = i ;

}

p -> rhead[i] -> right = NULL ;

p -> rhead[i] -> next = NULL ;

for ( i = 0 ; i < MAX1 ; i++ )          /* create col headnodes */

p -> chead[i] = ( struct cheadnode * ) malloc (

sizeof ( struct cheadnode ) ) ;

for ( i = 0 ; i < MAX2 - 1 ; i++ )               /*

initialize and link col headnodes together */

{

p -> chead[i] -> next = p -> chead[i + 1] ;

p -> chead[i] -> down = NULL ;

p -> chead[i] -> colno = i ;

}

p -> chead[i] -> down = NULL ;

p -> chead[i] -> next = NULL ;

/* create and initialize special headnode */

p -> smat = ( struct spmat * ) malloc ( sizeof (

struct spmat ) ) ;

p -> smat -> firstcol = p -> chead[0] ;

p -> smat -> firstrow = p -> rhead[0] ;

p -> smat -> noofcols = MAX2 ;

p -> smat -> noofrows = MAX1 ;

}

void create_array ( struct sparse *p )    /* creates, dynamically the matrix of size MAX1 x MAX2 */

{

int n, i ;

p -> sp = ( int * ) malloc ( MAX1 * MAX2 * sizeof (

int ) ) ;

for ( i = 0 ; i < MAX1 * MAX2 ; i++ )        /*

get the element and store it */

{

printf ( "Enter element no. %d:", i ) ;

scanf ( "%d", &n ) ;

* ( p -> sp + i ) = n ;

}

}


Related Discussions:- Sparse metrics

A tree having ''m'' nodes has (m-1) branches. prove., Q. Prove the hypothes...

Q. Prove the hypothesis that "A tree having 'm' nodes has exactly (m-1) branches".      Ans: A tree having m number of nodes has exactly (m-1) branches Proof: A root

Calculate address of an element in an array., Q. Explain the technique to c...

Q. Explain the technique to calculate the address of an element in an array. A  25 × 4  matrix array DATA is stored in memory in 'row-major order'. If base  address is 200 and

Algorithm for finding a key by binary search technique, Q. Write down an al...

Q. Write down an algorithm for finding a key from a sorted list using the binary search technique or method.

The complexity of multiplying two matrices, The complexity of multiplying t...

The complexity of multiplying two matrices of order m*n and n*p is    mnp

What is assertions, What is Assertions Introduction At every point...

What is Assertions Introduction At every point in a program, there are generally constraints on the computational state that should hold for program to be correct. For ins

Doubly linked list having n nodes, The time required to delete a node x fro...

The time required to delete a node x from a doubly linked list having n nodes is O (1)

Double linked list, In a doubly linked list, also called as 2 way list, eac...

In a doubly linked list, also called as 2 way list, each node is divided into 3 parts. The first part is called previous pointer field. It contains the address of the preceding

What are the specific needs for realism, Normal 0 false false...

Normal 0 false false false EN-IN X-NONE X-NONE MicrosoftInternetExplorer4

How can a lock object be called in the transaction, How can a lock object b...

How can a lock object be called in the transaction? By calling Enqueue and Dequeue in the transaction.

Explain optimal binary search trees, Explain Optimal Binary Search Trees ...

Explain Optimal Binary Search Trees One of the principal application of Binary Search Tree is to execute the operation of searching. If probabilities of searching for elements

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd