Solving trig equations with calculators part ii, Mathematics

Assignment Help:

Solving Trig Equations with Calculators, Part II : Since this document is also being prepared for viewing on the web we split this section into two parts to keep the size of the pages to a minimum.

Also, as along the last few examples in the earlier part of this section we are not going to be looking for solutions in an interval to save space. The significant part of this instance is to determine the solutions to the equation.  If we'd been given an interval it would be simple enough to determine the solutions that actually fall in the interval.

In all the examples in the earlier section all the arguments, the 3t, α/7, etc., were fairly simple.

Let's take a look at an example which has a slightly more complicated argument.

Example Solve 5 cos(2 x -1) = -3 .

Solution: Note as well that the argument here is not actually all that complicated but the addition of the "-1" frequently seems to confuse people so we have to a quick example along with this kind of argument. The solution procedure is identical to all of the problems we've done to this point hence we won't be putting in much explanation. Following is the solution.

                  Cos( 2x -1) = - 3/5 ⇒      2x -1 = cos-1 ( - 3/5) = 2.2143

This angle is persist in the second quadrant and hence we can use either -2.2143 or 2 ? - 2.2143 = 4.0689 for the second angle. Usually for these notes we'll employ the positive one. Thus the two angles are,

2 x -1 = 2.2143 + 2 ? n

2 x -1 = 4.0689 + 2 ? n                                      n= 0, ±1, ±2,.......

Now, still we need to determine the actual values of x which are the solutions. These are found in the similar manner as all the problems above. First we'll add one to both sides and then divide by two. Doing this gives,

x= 1.6072 + ? n

x= 2.5345 + ? n                        n= 0, ±1, ±2,.......

Hence, in this example we saw an argument which was a little different from those seen beforehand, but not all that different while it comes to working the problems hence don't get too excited regarding it.


Related Discussions:- Solving trig equations with calculators part ii

What is the objective of lipids metabolism, What is the objective of lipids...

What is the objective of lipids metabolism ? After studying this unit, you will be able to: 1. explain how fatty acids are oxidized for the production of energy, 2. describe

Geometric mean, When three quantities a, b and c are in G.P., t...

When three quantities a, b and c are in G.P., then the geometric mean "b" is calculated as follows. Since these quantities are in G.P., the r

The point which divides a gven line - segment externally, The point which d...

The point which divides a gven line - segment externally: Construction : i )Draw BX making an actue angle at B. ii) Starting from B mark three equal points on BX as sh

Example of operational stages in learning maths, Children of the same age c...

Children of the same age can be at different operational stages, and children of different ages, can be at the same developmental stage." Do you agree with this statement? If so, g

Velocity of a skydiver (calculus), using v=g/k(1-e^-kt) find the velocity o...

using v=g/k(1-e^-kt) find the velocity of the skydiver when k is 0.015

#titldifference between cpm n pert operation research pdfe.., difference be...

difference between cpm n pert operation research pdfepted#

Properties of exponential form, Properties 1.   The domain of the logar...

Properties 1.   The domain of the logarithm function is (0, ∞ ) .  In other terms, we can just plug positive numbers into a logarithm! We can't plug in zero or a negative numbe

Derive a boolean first-order query, Consider a database whose universe is a...

Consider a database whose universe is a finite set of vertices V and whose unique relation .E is binary and encodes the edges of an undirected (resp., directed) graph G: (V, E). Ea

Abstract algebra, How many homomorphism are there from z2 to z3. Zn is grou...

How many homomorphism are there from z2 to z3. Zn is group modulo n

Calculate the average, During 2008 the average number of beds required per ...

During 2008 the average number of beds required per day at St Hallam's hospital was 1800.  During the first 50 days of 2008 the average daily requirement for beds was 1830, with a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd