Solving trig equations with calculators part ii, Mathematics

Assignment Help:

Solving Trig Equations with Calculators, Part II : Since this document is also being prepared for viewing on the web we split this section into two parts to keep the size of the pages to a minimum.

Also, as along the last few examples in the earlier part of this section we are not going to be looking for solutions in an interval to save space. The significant part of this instance is to determine the solutions to the equation.  If we'd been given an interval it would be simple enough to determine the solutions that actually fall in the interval.

In all the examples in the earlier section all the arguments, the 3t, α/7, etc., were fairly simple.

Let's take a look at an example which has a slightly more complicated argument.

Example Solve 5 cos(2 x -1) = -3 .

Solution: Note as well that the argument here is not actually all that complicated but the addition of the "-1" frequently seems to confuse people so we have to a quick example along with this kind of argument. The solution procedure is identical to all of the problems we've done to this point hence we won't be putting in much explanation. Following is the solution.

                  Cos( 2x -1) = - 3/5 ⇒      2x -1 = cos-1 ( - 3/5) = 2.2143

This angle is persist in the second quadrant and hence we can use either -2.2143 or 2 ? - 2.2143 = 4.0689 for the second angle. Usually for these notes we'll employ the positive one. Thus the two angles are,

2 x -1 = 2.2143 + 2 ? n

2 x -1 = 4.0689 + 2 ? n                                      n= 0, ±1, ±2,.......

Now, still we need to determine the actual values of x which are the solutions. These are found in the similar manner as all the problems above. First we'll add one to both sides and then divide by two. Doing this gives,

x= 1.6072 + ? n

x= 2.5345 + ? n                        n= 0, ±1, ±2,.......

Hence, in this example we saw an argument which was a little different from those seen beforehand, but not all that different while it comes to working the problems hence don't get too excited regarding it.


Related Discussions:- Solving trig equations with calculators part ii

Tangent lines, Tangent Lines : The first problem which we're going to stud...

Tangent Lines : The first problem which we're going to study is the tangent line problem.  Before getting into this problem probably it would be best to define a tangent line.

Integers, Explain with the help of number line (-6)+(+5)

Explain with the help of number line (-6)+(+5)

Inflation , Inflation The inflation rate for a given period can be ca...

Inflation The inflation rate for a given period can be calculated using the following formula; Inflation = (current retail price index/retail price index in the base year)

Solid mensuration, given dimensions: 130cm, 180cm, and 190cm is to be divid...

given dimensions: 130cm, 180cm, and 190cm is to be divided by a line bisecting the longest side shown from its opposite vertex. what''s the area adjacent to 180cm? ;

Find the perimeter of triangle, The length of the sides of a triangle are 2...

The length of the sides of a triangle are 2x + y/2 , 5 x/3 + y + 1/2  and 2/3 x  + 2y + 5/2. If the triangle is equilateral. Find its perimeter. A ns: 2x + y/2 = 4x + y

ConnectEd, How do I increase and decrease tax and sales

How do I increase and decrease tax and sales

Hypothesis testing about the difference between two proporti, Hypothesis Te...

Hypothesis Testing About The Difference Between Two Proportions Hypothesis testing about the difference between two proportions is used to test the difference between the propo

Decomposing polygons to find area, find the area of this figure in square m...

find the area of this figure in square millimeter measure each segment to the nearest millmeter

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd