Solving a quadratic equation, Mathematics

Assignment Help:

In polynomials you have seen expressions of the form x2 + 3x - 4. Also we know that when an expression is equated to zero or some other expression, we call it an equation. The equations of the second degree in a single variable "x" or "y" are generally referred to as quadratic equations and the most general form of it is

ax2 + bx + c = 0. The roots or solution for the quadratic equation can be obtained by substituting different values for x and selecting that value for which the value of the equation is zero. The methods which we have seen in factorization of polynomials are also applicable to obtain the roots of a quadratic equation. However, in this part we look at a specific method which is only applicable to solve quadratic equations.

According to this method the roots of a quadratic equation ax2 + bx + c = 0 are

= 2436_quadratic equation1.png and x = 1422_quadratic equation.png

This is derived as follows. We have

         ax2 + bx + c       = 0

         ax2 + bx             = - c                                         ........(1)

On dividing equation (1) by a, we have x2 1418_quadratic equation2.png

In order to make the LHS a perfect square, we add to   2073_quadratic equation3.png  to the LHS and since the equality is to be preserved we do so for the other side also. Hence we obtain

x2 +

2304_quadratic equation4.png



 

2076_quadratic equation5.png 


Related Discussions:- Solving a quadratic equation

Complex roots - second order differential equations, We will be looking at ...

We will be looking at solutions to the differential equation, in this section ay′′ + by′ + cy = 0 Wherein roots of the characteristic equation, ar 2 + br + c = 0 Those

Cardioids and limacons - polar coordinates, Cardioids and Limacons Thes...

Cardioids and Limacons These can be split up into the following three cases. 1. Cardioids: r = a + a cos θ and r = a + a sin θ. These encompass a graph that is vaguel

Find the sides of hypotenuse , The hypotenuse of a right triangle is 20m. ...

The hypotenuse of a right triangle is 20m. If the difference between the length of the other sides is 4m. Find the sides. Ans: APQ x 2 + y 2 = 202 x 2  + y 2 = 400

Differential calculus finding limits, how can i evaluate this lim of x as x...

how can i evaluate this lim of x as x approaches to a

Find the distance between these two cities, Memphis, Tennessee, and New Orl...

Memphis, Tennessee, and New Orleans, Louisiana, lie approximately on the same meridian. Memphis has latitude 35°N and New Orleans has latitude 30°N. Find the distance between these

Percentage, A person spent 12.5% of his money and then rs.1600 and then 40%...

A person spent 12.5% of his money and then rs.1600 and then 40% of the remaining,now left rs.960 with him.What is his original money?

Prove that the ratio of the sum of odd terms, If there are (2n+1)terms  in ...

If there are (2n+1)terms  in an AP ,prove that the ratio of the sum of odd terms and the sum of even terms is (n+1):n Ans:    Let a, d be the I term & Cd of the AP. ∴ ak =

Determine the area of the sail, If a triangular sail has a horizontal lengt...

If a triangular sail has a horizontal length of 30 ft and a vertical height of 83 ft , Determine the area of the sail? a. 1,245 ft 2 b. 1,155 ft 2 c. 201 ft 2 d. 2,4

Solve the subsequent proportion, Solve the subsequent proportion: Exa...

Solve the subsequent proportion: Example: Solve the subsequent proportion for x. Solution: 5:x = 4:15 The product of the extremes is (5)(15) = 75. The produ

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd