Solve the subsequent quadratic equation, Mathematics

Assignment Help:

Solve the subsequent quadratic equation:

Solve the subsequent quadratic equation through taking the square roots of both sides.

3x2 = 100 - x2

Solution:

Step 1. Using the addition axiom, add x2 to both sides of the equation.

3x2  + x2          = 100 - x2  + x2

4x2       = 100

Step 2. Using the division axiom, divide both sides of the equation through 4.

4x 2 /4 = 100/4

x2  = 25

Step 3. Take the square root of both sides of the equation.

 

x2         = 25

√x2       = √25

x          = ±5

Thus, the roots are x = +5 and x = -5.

Step 4. Check the roots.

3x2       = 100 - x2

3(±5)2  = 100 - (±5)2

3(25)    = 100 - 25

75        = 75

If a pure quadratic equation is written in common form, a general expression can be written for its roots.  The common form of a pure quadratic is the subsequent.

ax2 + c = 0                                                                 

Using the subtraction axiom and subtract c from both sides of the equation.

ax2 = -c

Using the division axiom and divide both sides of the equation by a.

x2  = - c/a

Now take the square roots of both sides of the equation.

256_Solve the subsequent quadratic equation.png                                                            

Therefore, the roots of a pure quadratic equation written in common form ax2 + c = 0 are 1884_Solve the subsequent quadratic equation1.png.


Related Discussions:- Solve the subsequent quadratic equation

Find the maxima or minima and green theorem, 1) find the maxima and minima ...

1) find the maxima and minima of f(x,y,z) = 2x + y -3z subject to the constraint 2x^2+y^2+2z^2=1 2)compute the work done by the force field F(x,y,z) = x^2I + y j +y k in moving

Give the proofs in mathematics, Give the Proofs in Mathematics ? 1 Two...

Give the Proofs in Mathematics ? 1 Two-column deductive proof Proof: Statements                                                              Reasons * Start with given c

Continuity requirement, Continuity requirement : Let's discuss the continu...

Continuity requirement : Let's discuss the continuity requirement a little. Nowhere in the above description did the continuity requirement clearly come into play.  We need that t

What is congruent angles in parallel lines, What is Congruent Angles in Par...

What is Congruent Angles in Parallel Lines ? Postulate 4.1 (The Parallel Postulate) Through a given point not on a line there is exactly one line parallel to the line. T

Example of adding signed numbers, Example of Adding signed numbers: E...

Example of Adding signed numbers: Example: (2) + (-4) =      Solution: Start with 2 and count 4 whole numbers to the left. Thus: (2) + (-4) = -2 Adding

Law of Cosines, The law of cosines can only be applied to acute triangles. ...

The law of cosines can only be applied to acute triangles. Is this true or false?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd