Solve the subsequent quadratic equation, Mathematics

Assignment Help:

Solve the subsequent quadratic equation:

Solve the subsequent quadratic equation through taking the square roots of both sides.

3x2 = 100 - x2

Solution:

Step 1. Using the addition axiom, add x2 to both sides of the equation.

3x2  + x2          = 100 - x2  + x2

4x2       = 100

Step 2. Using the division axiom, divide both sides of the equation through 4.

4x 2 /4 = 100/4

x2  = 25

Step 3. Take the square root of both sides of the equation.

 

x2         = 25

√x2       = √25

x          = ±5

Thus, the roots are x = +5 and x = -5.

Step 4. Check the roots.

3x2       = 100 - x2

3(±5)2  = 100 - (±5)2

3(25)    = 100 - 25

75        = 75

If a pure quadratic equation is written in common form, a general expression can be written for its roots.  The common form of a pure quadratic is the subsequent.

ax2 + c = 0                                                                 

Using the subtraction axiom and subtract c from both sides of the equation.

ax2 = -c

Using the division axiom and divide both sides of the equation by a.

x2  = - c/a

Now take the square roots of both sides of the equation.

256_Solve the subsequent quadratic equation.png                                                            

Therefore, the roots of a pure quadratic equation written in common form ax2 + c = 0 are 1884_Solve the subsequent quadratic equation1.png.


Related Discussions:- Solve the subsequent quadratic equation

Mixing problems, In these problems we will begin with a substance which is ...

In these problems we will begin with a substance which is dissolved in a liquid. Liquid will be entering as well as leaving a holding tank. The liquid entering the tank may or may

Calculus, Properties of Integration

Properties of Integration

Determine if following sequences are monotonic or bounded, Determine if the...

Determine if the following sequences are monotonic and/or bounded. (a)   {-n 2 } ∞ n=0 (b) {( -1) n+1 } ∞ n=1 (c) {2/n 2 } ∞ n=5 Solution {-n 2 } ∞ n=0

Which of the subsequent binomials could represent the length, The area of a...

The area of a rectangle is represented through the trinomial: x 2 + x - 12. Which of the subsequent binomials could represent the length and width? Because the formula for the

Product and quotient rule, Product and Quotient Rule : Firstly let's se...

Product and Quotient Rule : Firstly let's see why we have to be careful with products & quotients.  Assume that we have the two functions f ( x ) = x 3   and g ( x ) = x 6 .

#mathematics induction, how many numbers must be selected from the set A={1...

how many numbers must be selected from the set A={1, 3, 5, 7, 9, 11, 13, 15}to guarantee that at least one pair of these numbers add up to16? Explain and justify your answer

Law of Iterative Expectation, #quesSuppose we have a stick of length L. We ...

#quesSuppose we have a stick of length L. We break it once at some point X ~ Unif(0;L). Then we break it again at some point Y ~ Unif(0;X). Use the law of iterated expectation to c

Intervals of validity, I've termed this section as Intervals of Validity si...

I've termed this section as Intervals of Validity since all of the illustrations will involve them. Though, there is many more to this section. We will notice a couple of theorems

Applications of series - estimating the value of a series, Estimating the V...

Estimating the Value of a Series One more application of series is not actually an application of infinite series.  It's much more an application of partial sums.  Actually, we

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd