Solve the recurrence relation, Mathematics

Assignment Help:

Solve the recurrence relation

T (K) = 2T (K-1), T (0) = 1

Ans: The following equation can be written in the subsequent form: 

tn - 2tn-1 =  0 

Here now successively replacing n by (n - 1) and then by (n - 2) and so on we obtain a set of equations.

The method is continued till terminating condition. Add these equations in such type of a way that all intermediate terms get cancelled. The equation can be rearranged as 

1709_Solve the recurrence relation.png

Multiplying all the equations correspondingly by 20, 21, ..., 2n - 1 and then adding them together, we get

tn - 2nt0 = 0 

or,  tn = 2n


Related Discussions:- Solve the recurrence relation

Commercial maths, if 500kg of food lasts 40 days for 30 men.how many men wi...

if 500kg of food lasts 40 days for 30 men.how many men will consume 675kg of food in 45 days.

Definition of the laplace transform, Definition Assume that f(t) is a ...

Definition Assume that f(t) is a piecewise continuous function. The Laplace transform of f(t) is denoted L{ f (t )} and defined by, There is an optional notation for L

Mensuration, if area of a rectangle is 27 sqmtr and it perimeter is 24 m fi...

if area of a rectangle is 27 sqmtr and it perimeter is 24 m find the length and breath#

Algebraic expressions, how to simplify an expression which has different si...

how to simplify an expression which has different signs

Ratio-categories of situations requiring division , Ratio - situations in ...

Ratio - situations in which we need to compare two quantities in terms of their ratio. (e.g., if Munna weighs 40 Kg. and Munni weighs 50 Kg., find the ratio of their weights.)

An initial species population , An initial species population is y(0) = 300...

An initial species population is y(0) = 3000. At t=0 the population starts to grow exponentially with a doubling time of 2 years. Mark the only correct statement: a)    The per

Describe about arithmetic and geometric series, Describe about Arithmetic a...

Describe about Arithmetic and Geometric Series? When the terms of a sequence are added together instead of separated by commas, the sequence becomes a series. You will use seri

Derivatives of exponential and logarithm functions, Derivatives of Exponent...

Derivatives of Exponential and Logarithm Functions : The next set of functions which we desire to take a look at are exponential & logarithm functions. The most common exponentia

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd