Solve the recurrence relation, Mathematics

Assignment Help:

Solve the recurrence relation

T (K) = 2T (K-1), T (0) = 1

Ans: The following equation can be written in the subsequent form: 

tn - 2tn-1 =  0 

Here now successively replacing n by (n - 1) and then by (n - 2) and so on we obtain a set of equations.

The method is continued till terminating condition. Add these equations in such type of a way that all intermediate terms get cancelled. The equation can be rearranged as 

1709_Solve the recurrence relation.png

Multiplying all the equations correspondingly by 20, 21, ..., 2n - 1 and then adding them together, we get

tn - 2nt0 = 0 

or,  tn = 2n


Related Discussions:- Solve the recurrence relation

Combining like terms, i don''t understand what my teacher when she talks ab...

i don''t understand what my teacher when she talks about when she talks about cosecutive integers etc... so can u help me???

Integers, i do not understand the rules for adding and subtracting integers...

i do not understand the rules for adding and subtracting integers, nor do i understand how to multiply and divide

How many cubic yards of concrete are required, A concrete retaining wall is...

A concrete retaining wall is 120 feet long with ends shaped as given. How many cubic yards of concrete are required to construct the wall? a. 217.8 yd 3 b. 5,880 yd 3

Partial derivatives, So far we have considered differentiation of functions...

So far we have considered differentiation of functions of one independent variable. In many situations, we come across functions with more than one independent variable

Solving trig equations with calculators, Solving Trig Equations with Calcul...

Solving Trig Equations with Calculators, Part I : The single problem along with the equations we solved out in there is that they pretty much all had solutions which came from a

Newtons method , Newton's Method : If x n is an approximation a solution ...

Newton's Method : If x n is an approximation a solution of f ( x ) = 0 and if given by, f ′ ( x n ) ≠ 0 the next approximation is given by

Example of imaginary numbers, Example of Imaginary Numbers: Example 1...

Example of Imaginary Numbers: Example 1: Multiply √-2  and √-32 Solution: (√-2)( √-32) = (√2i)( √32i) =√64 (-1) =8 (-1) =-8 Example 2: Divid

What is the square root of -i, To find sq root by the simple step... root (...

To find sq root by the simple step... root (-i)=a+ib............... and arg of -i= -pi/2 or 5pi/2

Arc length - applications of integrals, Arc Length - Applications of integr...

Arc Length - Applications of integrals In this part we are going to look at determining the arc length of a function.  As it's sufficiently easy to derive the formulas that we'

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd