Solve the recurrence relation, Mathematics

Assignment Help:

Solve the recurrence relation

T (K) = 2T (K-1), T (0) = 1

Ans: The following equation can be written in the subsequent form: 

tn - 2tn-1 =  0 

Here now successively replacing n by (n - 1) and then by (n - 2) and so on we obtain a set of equations.

The method is continued till terminating condition. Add these equations in such type of a way that all intermediate terms get cancelled. The equation can be rearranged as 

1709_Solve the recurrence relation.png

Multiplying all the equations correspondingly by 20, 21, ..., 2n - 1 and then adding them together, we get

tn - 2nt0 = 0 

or,  tn = 2n


Related Discussions:- Solve the recurrence relation

Calculate the value of expected value, The owner of TMH Hospital wants to o...

The owner of TMH Hospital wants to open a new facility in a certain area. He usually builds 25-, 50-, or 100-bed facilities, depending on whether anticipated demand is low, medium

What is larry''s salary after the raise, Larry earned $32,000 per year. The...

Larry earned $32,000 per year. Then he received a (3)1/4% rise. What is Larry's salary after the raise? If Larry earns a (3) 1/4 % (or 3.25%) raise, he will earn 103.25% of his

Solve the subsequent quadratic equation, Solve the subsequent quadratic equ...

Solve the subsequent quadratic equation: Solve the subsequent quadratic equation through taking the square roots of both sides. 3x 2 = 100 - x 2 Solution: Step 1

Derive the marshalian demand functions, (a) Derive the Marshalian demand fu...

(a) Derive the Marshalian demand functions for the following utility function: u(x 1 ,x 2 ,x 3 ) = x 1 + δ ln(x 2 )       x 1 ≥ 0, x 2 ≥ 0 Does one need to consider the is

Least common denominator using primes, Least Common Denominator Using Prime...

Least Common Denominator Using Primes: A prime number is a whole number (integer) whose only factors are itself and one. So the first prime numbers are given as follows: 1,

Geometyr, Lines EF and GH are graphed on this coordinate plane. Which point...

Lines EF and GH are graphed on this coordinate plane. Which point is the intersection of lines EF and GH?

Extreme value theorem, Extreme Value Theorem : Assume that f ( x ) is cont...

Extreme Value Theorem : Assume that f ( x ) is continuous on the interval [a,b] then there are two numbers a ≤ c, d ≤ b so that f (c ) is an absolute maximum for the function and

Maths, whats 100 + 90 - 6

whats 100 + 90 - 6

Reason for why limits not existing, Reason for why limits not existing : I...

Reason for why limits not existing : In the previous section we saw two limits that did not.  We saw that did not exist since the function did not settle down to a sing

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd