Solve the recurrence relation, Mathematics

Assignment Help:

Solve the recurrence relation

T (K) = 2T (K-1), T (0) = 1

Ans: The following equation can be written in the subsequent form: 

tn - 2tn-1 =  0 

Here now successively replacing n by (n - 1) and then by (n - 2) and so on we obtain a set of equations.

The method is continued till terminating condition. Add these equations in such type of a way that all intermediate terms get cancelled. The equation can be rearranged as 

1709_Solve the recurrence relation.png

Multiplying all the equations correspondingly by 20, 21, ..., 2n - 1 and then adding them together, we get

tn - 2nt0 = 0 

or,  tn = 2n


Related Discussions:- Solve the recurrence relation

Series - convergence or divergence, Series - Convergence/Divergence In ...

Series - Convergence/Divergence In the earlier section we spent some time getting familiar with series and we briefly explained convergence and divergence.  Previous to worryin

Cartesian product of sets, The Cartesian product (also called as the cross ...

The Cartesian product (also called as the cross product) of two sets A and B, shown by AΧB (in the similar order) is the set of all ordered pairs (x, y) such that x€A and y€B. What

Word problem, Twins Olivia and Chelsea and their friend Rylee were celebrat...

Twins Olivia and Chelsea and their friend Rylee were celebrating their fourteenth birthdays with a party at the beach. The first fun activity was water games. As Nicole arrived, sh

The definite integral- area under a curve, The Definite Integ...

The Definite Integral Area under a Curve If there exists an irregularly shaped curve, y = f(x) then there is no formula to find out

Show that x(q-r) + y(r-p) + z(p-q) = 0, If the p th , q th & r th term of...

If the p th , q th & r th term of an AP is x, y and z respectively, show that x(q-r) + y(r-p) + z(p-q) = 0 Ans:    p th term ⇒ x = A + (p-1) D q th term ⇒ y = A + (

What is set, What is a set? Explain various methods to represent a set in s...

What is a set? Explain various methods to represent a set in set theory. Define the following with the help of suitable examples.      (i) Singleton Set

Derive the hicksian demand function using indirect utility , (a) Derive the...

(a) Derive the Marshalian demand functions and the indirect utility function for the following utility function: u(x1, x2, x3) = x1 1/6 x2 1/6 x3 1/6    x1≥ 0, x2≥0,x3≥ 0

Derivative for the trig function, Derivative for the trig function: We'll ...

Derivative for the trig function: We'll begin with finding the derivative of the sine function. To do this we will have to utilize the definition of the derivative. It's been wher

Geometry, a figure is made of a rectangle and an isosceles right triangle. ...

a figure is made of a rectangle and an isosceles right triangle. the rectangle has sides of 6 in. and 3 in. one of the short sides of the rectangle is also one of the legs of the r

Index number, reflection about index number in a creative way

reflection about index number in a creative way

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd