Solve the recurrence relation, Mathematics

Assignment Help:

Solve the recurrence relation

T (K) = 2T (K-1), T (0) = 1

Ans: The following equation can be written in the subsequent form: 

tn - 2tn-1 =  0 

Here now successively replacing n by (n - 1) and then by (n - 2) and so on we obtain a set of equations.

The method is continued till terminating condition. Add these equations in such type of a way that all intermediate terms get cancelled. The equation can be rearranged as 

1709_Solve the recurrence relation.png

Multiplying all the equations correspondingly by 20, 21, ..., 2n - 1 and then adding them together, we get

tn - 2nt0 = 0 

or,  tn = 2n


Related Discussions:- Solve the recurrence relation

Assignment, how to get the objective report?

how to get the objective report?

Simplifying rational expressions, I need to simple this rational expression...

I need to simple this rational expression, but I can''t figure out how. (x+1)/(x^2-2x-35)+(x^2+x-12)/(x^2-2x-24)(x^2-4x-12)/(x^2+2x-15)

Show that a slope will vary along a curve, Can you show that a slope will v...

Can you show that a slope will vary along a curve (as opposed to a straight line)?

Vector addition, Is it possible to add two vectors of unequal magnitude and...

Is it possible to add two vectors of unequal magnitude and get a resultant of zero?Please explain also. Ans) no it is not possible as .. if the magnitude is diffrent then they c

Need help , understandin rates and unitrates

understandin rates and unitrates

MATH HELP: URGENT, the andersons are buying a new home and need to fence th...

the andersons are buying a new home and need to fence their yard. the yard is 40 ft by 80 ft. each fencing section is 8ft. how many sections will they need?how many posts will they

Simple harmonic motion, prove that the composition of two simple harmonic o...

prove that the composition of two simple harmonic of the same period and in the same straight line is also a simple harmonic motion of the same period.

Gabbyu, how smart do u have to be to get into google

how smart do u have to be to get into google

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd