Solve the differential equation, Mathematics

Assignment Help:

Solve the subsequent differential equation and find out the interval of validity for the solution.

Let's start things off along with a fairly simple illustration so we can notice the process without getting lost in details of the other matters that frequently arise along with these problems.

dy/dt = 6 y2x, y(1) = 1/25

Solution:

This is clear, hopefully, as this differential equation is separable. Thus, let's divide the differential equation and then integrate both sides. As with the linear first order officially we will raise up a constant of integration on both sides from the integrals on every side of the equal sign. The two can be shifted to the similar side and absorbed in each other.  We will utilize the convention as puts the particular constant on the side along with the x's.

y-2 dy = 6x dx

∫ y-2 dy = ∫6x dx

-1/y = 3x2 + c

Therefore, we now have an implicit solution. This type of solution is easy sufficient to get an explicit solution, though before getting that this is generally easier to get the value of the constant at such point. Therefore apply the initial condition and get the value of c.

-1/(1/125) = 3(1)2 + c; c = -28

Plug this in the general solution and after that solves to find an explicit solution.

-1/y = 3x2 + 28

y(x) = 1/(28 - 3x2)

Here, as far as solutions go we have found the solution.  We do require starting worrying regarding intervals of validity however.

Recall as there are two conditions which describe an interval of validity.  First, it should be a continuous interval along with no holes or breaks in it.  Second it should include the value of the independent variable in the first condition, x = 1 in this instance.

Thus, for our case we've got to ignore two values of x that are:

x ≠ + √(28/3) ≈ + 3.05505

 These will provide us division via zero. This provides us three possible intervals of validity.

769_Solve the differential equation.png

Though, only one of these will include the value of x from the initial condition and thus we can notice that

- √(28/3) < x< √(28/3)

It must be the interval of validity for such solution. Now is a graph of the solution.

 

Keep in mind that this does not as that either of another two intervals listed above cannot be the interval of validity for any solution. So along with the proper initial condition either of these could have been the interval of validity.

We will leave this to you to verify the details of the subsequent claims.  If we utilize an initial condition of

y(-4) = -1/20

We will find exactly the similar solution through in this case the interval of validity would be the individual.

- ∞ < x< -√(28/3)

Similarly, if we use

y(6) = -1/80

Since the initial condition we again find exactly similar solution and in this case the third interval turns into the interval of validity.

-√(28/3) < x < ∞

Thus, simply changing the initial condition a little can provide any of the possible intervals.

1888_Solve the differential equation1.png


Related Discussions:- Solve the differential equation

Discrete uniform distribution, Discrete Uniform Distribution Acme Limit...

Discrete Uniform Distribution Acme Limited is a car manufacturer. The company can paint the car in 3 possible colors: White, Black and Blue. Until the population is sampled, th

How much did he have in savings at the starting, Bill spent 50% of his savi...

Bill spent 50% of his savings on school supplies, and then he spent 50% of what was left on lunch. If he had $6 left after lunch, how much did he have in savings at the starting?

Graphing formulas, how do you graph y+3=-x+3x on a TI-83 graphing calculato...

how do you graph y+3=-x+3x on a TI-83 graphing calculator?

Parametric equations and curves - polar coordinates, Parametric Equations a...

Parametric Equations and Curves Till to this point we have looked almost completely at functions in the form y = f (x) or x = h (y) and approximately all of the formulas that w

Adding integers, Do you subtract when you add integers.

Do you subtract when you add integers.

Math homework help, I need help witth my homework can you help please

I need help witth my homework can you help please

Solving decimal equations, The distance around a square photograph is 12.8 ...

The distance around a square photograph is 12.8 centimeters. What is the langth of each side of the fotograph?

Graphs of sin x and cos x, Q. Graphs of Sin x and Cos x ? Ans. The...

Q. Graphs of Sin x and Cos x ? Ans. The sine and cosine functions are related to the path that an object might take around a circle. Suppose a dolphin was swimming over

Applications of de moiver, what are the applications of de moiver''s theore...

what are the applications of de moiver''s theorem in programming and software engineering

Determine if following sequences are monotonic or bounded, Determine if the...

Determine if the following sequences are monotonic and/or bounded. (a)   {-n 2 } ∞ n=0 (b) {( -1) n+1 } ∞ n=1 (c) {2/n 2 } ∞ n=5 Solution {-n 2 } ∞ n=0

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd