Solve quadratic equation, Algebra

Assignment Help:

Solve following equations by factoring.

a) x2 - x = 12

b) y 2 + 12 y + 36 = 0

Solution

a)      x2 - x = 12

            First to solve it get everything on side of the equation and then factor.

             x2 - x = 12

           ( x - 4) ( x + 3) = 0

Now we've got a product of two terms which is equal to zero. It means that at least one of the following must be true.

x - 4 = 0          OR                                 x + 3 = 0

x = 4               OR                                  x = -3

Note that each of these is linear equation i.e easy enough to solve.  Now we have two solutions to the equation,

x = 4 and

x = -3 . 

As through linear equations we can always check our solutions through plugging the solution back into the equation.  We will check x = -3 and leave the other to you to check.

 

12    = 12          OK

b)      y 2 + 12 y + 36 = 0

In this case already we have zero on one side & thus we don't have to do any manipulation to the equation all that we have to do is factor.  Also, don't get excited regarding the fact that now we have y's in the equation. We won't always be dealing along with x's so don't expect to always see them.

So, let's factor this equation.

y 2 + 12 y + 36 = 0

(y + 6)2  = 0

(y + 6) ( y +6) = 0

In this we've got a perfect square.  We broke up the square to indicate that we actually do have an application of the zero factor property.  Though, we usually don't do that. Usually we will go straight to the answer from the squared part.

In this case solution to the equation is,

                                                         y = -6

We have a single value here only as opposed to the two solutions we've been getting to this point. We will frequently call this solution a double root or say that it contain multiplicity of 2 since it came from a term that was squared.


Related Discussions:- Solve quadratic equation

Solve two-step equations, hello! at my school we are learning how to solve ...

hello! at my school we are learning how to solve two-step equations but i am having a little trouble. can you please help me?

Elem mat., A store sells cashews for $3.00 per pound and pecans for $8.00 p...

A store sells cashews for $3.00 per pound and pecans for $8.00 per pound. How many pounds of cashews and how many pounds of pecans should you mix to make a 50-lb mixture costing $4

Britt, #ques1). Using the function: y=y0,(.90)^t-1. In this equation y0 is ...

#ques1). Using the function: y=y0,(.90)^t-1. In this equation y0 is the amount of initial dose and y is the amount of medication still available t hours after drug is administered.

Agnes, #question.three individuals form a partnership and agree to divid th...

#question.three individuals form a partnership and agree to divid the profits equally x invests $9000, y invest $7000 and z invest $4000. How much less does x receive than if the p

Set-builder notation, to get a discount at the diner, you must either be le...

to get a discount at the diner, you must either be less than 10 years old or at least 55 years old.

Equations with radicals, The title of this section is perhaps a little misl...

The title of this section is perhaps a little misleading.  The title appears to imply that we're going to look at equations which involve any radicals.  However, we are going to li

Math, 10000000004*56464684654654

10000000004*56464684654654

Uniform motion, How do you do uniform motion? i am stuck on some problems

How do you do uniform motion? i am stuck on some problems

Substitution method, Not every linear system along with three equations and...

Not every linear system along with three equations and three variables utilizes the elimination method exclusively therefore let's take a look at another instance where the substit

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd