Solve quadratic equation, Algebra

Assignment Help:

Solve following equations by factoring.

a) x2 - x = 12

b) y 2 + 12 y + 36 = 0

Solution

a)      x2 - x = 12

            First to solve it get everything on side of the equation and then factor.

             x2 - x = 12

           ( x - 4) ( x + 3) = 0

Now we've got a product of two terms which is equal to zero. It means that at least one of the following must be true.

x - 4 = 0          OR                                 x + 3 = 0

x = 4               OR                                  x = -3

Note that each of these is linear equation i.e easy enough to solve.  Now we have two solutions to the equation,

x = 4 and

x = -3 . 

As through linear equations we can always check our solutions through plugging the solution back into the equation.  We will check x = -3 and leave the other to you to check.

 

12    = 12          OK

b)      y 2 + 12 y + 36 = 0

In this case already we have zero on one side & thus we don't have to do any manipulation to the equation all that we have to do is factor.  Also, don't get excited regarding the fact that now we have y's in the equation. We won't always be dealing along with x's so don't expect to always see them.

So, let's factor this equation.

y 2 + 12 y + 36 = 0

(y + 6)2  = 0

(y + 6) ( y +6) = 0

In this we've got a perfect square.  We broke up the square to indicate that we actually do have an application of the zero factor property.  Though, we usually don't do that. Usually we will go straight to the answer from the squared part.

In this case solution to the equation is,

                                                         y = -6

We have a single value here only as opposed to the two solutions we've been getting to this point. We will frequently call this solution a double root or say that it contain multiplicity of 2 since it came from a term that was squared.


Related Discussions:- Solve quadratic equation

Process to sketching parabolas, Now, let's get back to parabolas. There is ...

Now, let's get back to parabolas. There is a basic procedure we can always use to get a pretty good sketch of a parabola. Following it is.  1. Determine the vertex. We'll discus

Lagrange multipliers, 1. In real world optimisation problems there is often...

1. In real world optimisation problems there is often an accompanying constraint that must also be satisfied. These problems are typically solved using "Lagrange Multipliers", whic

First form of the parabola, Let's go through first form of the parabola. ...

Let's go through first form of the parabola.                     f ( x ) = a ( x - h ) 2  + k There are two pieces of information regarding the parabola which we can instant

Test prep, 1). Using the function: y=y0,(.90)^t-1. In this equation y0 is t...

1). Using the function: y=y0,(.90)^t-1. In this equation y0 is the amount of initial dose and y is the amount of medication still available t hours after drug is administered. Supp

Iris, An object 4.8 feet tall casts a shadow that is 14.4 feet long. How lo...

An object 4.8 feet tall casts a shadow that is 14.4 feet long. How long in feet would the shadow be for an object which is 13.2 feet tall?

2X+1-ln x:x-1, i want the limits of this equation

i want the limits of this equation

Example of work- rate problems, An office contains two envelope stuffing ma...

An office contains two envelope stuffing machines. Machine A can stuff a batch of envelopes within 5 hours, whereas Machine B can stuff batch of envelopes within 3 hours. How much

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd