Solve lpp question graphically, Operation Research

Assignment Help:

A producer of furniture manufactures two products - tables and chairs. Processing of these products is done on two machines A and B. A chair needs 2 hours on machine A and 6 hours on machine B. A table needs 5 hours on machine A and no time on machine B. There are 16 hours of time per day accessible on machine A and 30 hours on machine B. Profit earned by the manufacturer from a chair and a table is Rs 2 and Rs 10 correspondingly. What must be the everyday production of each of two products?

Answer

Assume x1 indicates the number of chairs

Assume x2 indicates the number of tables

 

Chairs

Tables

Availability

Machine A

Machine B

2

6

5

0

16

30

Profit

Rs 2

Rs 10

 

 

LPP

Max Z = 2x1 + 10x2

Subject to

2x1+ 5x2 ≤ 16

            6x1 + 0x2 ≤ 30

 x1 ≥ 0 , x2 ≥ 0 

 

Solve graphically

The first constraint 2x1+ 5x2 ≤ 16, can be written in the form of equation

2x1+ 5x2 = 16

Place x1 = 0, then x2 = 16/5 = 3.2

Place x2 = 0, then x1 = 8

The coordinates are (0, 3.2) and (8, 0)

The second constraint 6x1 + 0x2 ≤ 30, can be written in the form of equation

6x1 = 30 → x1 =5

764_LPP Problems Solved Graphically.png

The corner positions of feasible region are A, B and C. So the coordinates for the corner positions are

A (0, 3.2)

B (5, 1.2) (Solve the two equations 2x1+ 5x2 = 16 and x1 =5 to obtain the coordinates)

C (5, 0)

 

We are given that Max Z = 2x1 + 10x2

At A (0, 3.2)

Z = 2(0) + 10(3.2) = 32

 

At B (5, 1.2)

Z = 2(5) + 10(1.2) = 22

 

At C (5, 0)

Z = 2(5) + 10(0) = 10

 

Max Z = 32 and x1 = 0, x2 = 3.2

The manufacturer must manufacture about 3 tables and no chairs to obtain the max profit.

 


Related Discussions:- Solve lpp question graphically

Investigate and examine aspects of planning structure, You are required to ...

You are required to investigate and examine aspects of planning and organisational structure for a 'real-life' organisation. This assessment enables you to relate the theories and

I need answer for the below question, A paper mill produces two grades of p...

A paper mill produces two grades of paper viz., X and Y. Because of raw material restrictions, it cannot produce more than 400 tons of grade X paper and 300 tons of grade Y paper i

Why the dual formulation?, Dual formulation is done for a number of r...

Dual formulation is done for a number of reasons. The solution to a Dual problem provides all essential information about the solution to the Primal problem. A so

ASSIGNMENT, #A paper mill produces two grades of paper viz., X and Y. Becau...

#A paper mill produces two grades of paper viz., X and Y. Because of raw material restrictions, it cannot produce more than 400 tons of grade X paper and 300 tons of grade Y paper

Linear programimg, Solve the following Linear Programming Problem using Si...

Solve the following Linear Programming Problem using Simple method. Maximize Z= 3x1 + 2X2 Subject to the constraints: X1+ X2 = 4 X1 - X2 = 2 X1, X2 = 0

LINEAR PROGRAMMING, b. A paper mill produces two grades of paper viz., X an...

b. A paper mill produces two grades of paper viz., X and Y. Because of raw material restrictions, it cannot produce more than 400 tons of grade X paper and 300 tons of grade Y pape

Linear programming problem, Solve the following Linear Programming Problem ...

Solve the following Linear Programming Problem using Simple method. Maximize Z= 3x1 + 2X2 Subject to the constraints: X1+ X2 = 4 X1 - X2 = 2 X1, X2 = 0

Government documents - classification of documents, Government Documents: ...

Government Documents: Government  publications are the official documents brought out at government expense. They are the records of activities of the (1) Executive, (2) Legis

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd