Solve a quadratic equation through completing the square, Algebra

Assignment Help:

Solve a quadratic equation through completing the square

Now it's time to see how we employ completing the square to solve out a quadratic equation. The procedure is best seen as we work an instance thus let's do that.

Example: By using complete the square method to solve each of the following quadratic equations.

                                                         x2 - 6x + 1 = 0

Solution

                                   x2 - 6x + 1 = 0

Step 1 : Divide the equation through the coefficient of the x2 term.  Remember that completing the square needed a coefficient of one on this term & it will guarantee that we will get that. However, we don't need doing that for this equation.

Step 2 : Set the equation up in order that the x's are on the left side & the constant is on the right side.

                                 x2 - 6x = -1

Step 3: Complete the square on the left side.  Though, this time we will have to add the number to both sides of the equal sign rather than just the left side. It is because we have to recall the rule that what we do to one side of an equation we have to do to the other side of the equation.

First one, here is the number we adding up to both sides.

                ( -6/ 2  ) 2=  (-3)= 9

Now, complete the square.

           x2 - 6x + 9 = -1 +9

              (x - 3)2 = 8

Step 4: Now, at this instance notice that we can employ the square root property on this equation. That was the reason of the first three steps.  Doing this will provides us the solution to the equation.

x - 3 = ±  8     ⇒  x = 3 ±   √8

And i.e. the procedure.  Let's now do the remaining parts.


Related Discussions:- Solve a quadratic equation through completing the square

Set, Ask question #MA survey of 400 of recently qualified chartered Account...

Ask question #MA survey of 400 of recently qualified chartered Accountant revealed that 112 joined industry, 120 stated practice & 160 joined the firms of practicing chartered acco

Vectors, Any vector space V satisÖes the ten axioms, among which the last o...

Any vector space V satisÖes the ten axioms, among which the last one is: "for any vector * u 2 V; 1 * u = * u; where 1 is the multiplicative identity of real numbers R:" Discuss th

Miscellaneous functions, Miscellaneous Functions The importance of thi...

Miscellaneous Functions The importance of this section is to introduce you with some other functions that don't really need the work to graph that the ones which we've looked

Rings homomorphisms, if A is an ideal and phi is onto S,then phi(A)is an id...

if A is an ideal and phi is onto S,then phi(A)is an ideal.

Lisa, (8x^3+6x^2-8x-15)+(4x-5)

(8x^3+6x^2-8x-15)+(4x-5)

Example of absolute value equations, Solve following.                   ...

Solve following.                                  |2x - 5 |= 9 Solution Now, recall that absolute value does not just make all minus signs in plus signs. In order to sol

Quadratic equations, Before proceeding with this section we have to note th...

Before proceeding with this section we have to note that the topic of solving quadratic equations will be covered into two sections. It is done for the advantage of those viewing t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd