Solve a quadratic equation through completing the square, Algebra

Assignment Help:

Solve a quadratic equation through completing the square

Now it's time to see how we employ completing the square to solve out a quadratic equation. The procedure is best seen as we work an instance thus let's do that.

Example: By using complete the square method to solve each of the following quadratic equations.

                                                         x2 - 6x + 1 = 0

Solution

                                   x2 - 6x + 1 = 0

Step 1 : Divide the equation through the coefficient of the x2 term.  Remember that completing the square needed a coefficient of one on this term & it will guarantee that we will get that. However, we don't need doing that for this equation.

Step 2 : Set the equation up in order that the x's are on the left side & the constant is on the right side.

                                 x2 - 6x = -1

Step 3: Complete the square on the left side.  Though, this time we will have to add the number to both sides of the equal sign rather than just the left side. It is because we have to recall the rule that what we do to one side of an equation we have to do to the other side of the equation.

First one, here is the number we adding up to both sides.

                ( -6/ 2  ) 2=  (-3)= 9

Now, complete the square.

           x2 - 6x + 9 = -1 +9

              (x - 3)2 = 8

Step 4: Now, at this instance notice that we can employ the square root property on this equation. That was the reason of the first three steps.  Doing this will provides us the solution to the equation.

x - 3 = ±  8     ⇒  x = 3 ±   √8

And i.e. the procedure.  Let's now do the remaining parts.


Related Discussions:- Solve a quadratic equation through completing the square

Proportions, A kilometer is about 5/8 mile.About how many miles are in 4 2/...

A kilometer is about 5/8 mile.About how many miles are in 4 2/5 kilometers? How would I set a proportion?

Solve the given log function, Example: Solve following equations. 2 log...

Example: Solve following equations. 2 log 9 (√x) - log 9 (6x -1) = 0 Solution  Along with this equation there are two logarithms only in the equation thus it's easy t

Average rate of change .., find the average rate of change of the function ...

find the average rate of change of the function f(x)=4x from X1=0 to x2=6

Multiplicity of the zero, The given fact will relate all of these ideas to ...

The given fact will relate all of these ideas to the multiplicity of the zero. Fact If x = r is a zero of the polynomial P (x) along with multiplicity k then, 1.   If th

Row Space, What is the relationship between Row Space and Null Space of a m...

What is the relationship between Row Space and Null Space of a matrix ?

Quadratic equations, Ask question #Minimum 100 words is accepted# is help...

Ask question #Minimum 100 words is accepted# is help available for categories listed above

Area, no questions help me

no questions help me

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd