Solve a quadratic equation through completing the square, Algebra

Assignment Help:

Solve a quadratic equation through completing the square

Now it's time to see how we employ completing the square to solve out a quadratic equation. The procedure is best seen as we work an instance thus let's do that.

Example: By using complete the square method to solve each of the following quadratic equations.

                                                         x2 - 6x + 1 = 0

Solution

                                   x2 - 6x + 1 = 0

Step 1 : Divide the equation through the coefficient of the x2 term.  Remember that completing the square needed a coefficient of one on this term & it will guarantee that we will get that. However, we don't need doing that for this equation.

Step 2 : Set the equation up in order that the x's are on the left side & the constant is on the right side.

                                 x2 - 6x = -1

Step 3: Complete the square on the left side.  Though, this time we will have to add the number to both sides of the equal sign rather than just the left side. It is because we have to recall the rule that what we do to one side of an equation we have to do to the other side of the equation.

First one, here is the number we adding up to both sides.

                ( -6/ 2  ) 2=  (-3)= 9

Now, complete the square.

           x2 - 6x + 9 = -1 +9

              (x - 3)2 = 8

Step 4: Now, at this instance notice that we can employ the square root property on this equation. That was the reason of the first three steps.  Doing this will provides us the solution to the equation.

x - 3 = ±  8     ⇒  x = 3 ±   √8

And i.e. the procedure.  Let's now do the remaining parts.


Related Discussions:- Solve a quadratic equation through completing the square

Iris, An object 4.8 feet tall casts a shadow that is 14.4 feet long. How lo...

An object 4.8 feet tall casts a shadow that is 14.4 feet long. How long in feet would the shadow be for an object which is 13.2 feet tall?

Solving quadratics equations by factoring, the parking lot will have an are...

the parking lot will have an area of 160 square meters.The shorter base is 4m longer than the height of the trapezoid,and the longer base is 8m longer than the height.What is the l

Number problems, The difference of two numbers is 18. The larger number is ...

The difference of two numbers is 18. The larger number is four more than twice the smaller. What are the numbers?

Find the solution of the system, Example Solve out the following system of ...

Example Solve out the following system of equations. x 2 + y 2  = 10 2 x + y = 1 Solution In linear systems we had the alternative of using either method on any gi

Solving system graphically, #questionSolve the system graphically. If the s...

#questionSolve the system graphically. If the system has an infinite number of solutions, use set builder notation to write the solution set. If the system has no solution, state t

Algebra two, Write the equation of the circle in standard form. Find the c...

Write the equation of the circle in standard form. Find the center, radius, intercepts, and graph the circle. ??2+??2+16??-18??+145=25.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd