Solve a quadratic equation through completing the square, Algebra

Assignment Help:

Solve a quadratic equation through completing the square

Now it's time to see how we employ completing the square to solve out a quadratic equation. The procedure is best seen as we work an instance thus let's do that.

Example: By using complete the square method to solve each of the following quadratic equations.

                                                         x2 - 6x + 1 = 0

Solution

                                   x2 - 6x + 1 = 0

Step 1 : Divide the equation through the coefficient of the x2 term.  Remember that completing the square needed a coefficient of one on this term & it will guarantee that we will get that. However, we don't need doing that for this equation.

Step 2 : Set the equation up in order that the x's are on the left side & the constant is on the right side.

                                 x2 - 6x = -1

Step 3: Complete the square on the left side.  Though, this time we will have to add the number to both sides of the equal sign rather than just the left side. It is because we have to recall the rule that what we do to one side of an equation we have to do to the other side of the equation.

First one, here is the number we adding up to both sides.

                ( -6/ 2  ) 2=  (-3)= 9

Now, complete the square.

           x2 - 6x + 9 = -1 +9

              (x - 3)2 = 8

Step 4: Now, at this instance notice that we can employ the square root property on this equation. That was the reason of the first three steps.  Doing this will provides us the solution to the equation.

x - 3 = ±  8     ⇒  x = 3 ±   √8

And i.e. the procedure.  Let's now do the remaining parts.


Related Discussions:- Solve a quadratic equation through completing the square

Word problems, Shirley has 8 fewer pairs of earrings than bracelets. She h...

Shirley has 8 fewer pairs of earrings than bracelets. She has 15 bracelets. How many pairs of earrings does she have?

Example of method of elimination, Example    Solve each of the following sy...

Example    Solve each of the following systems of equations.              5x + 4 y = 1              3x - 6 y = 2 Solution It is the system in the previous examples wh

Math, what does x when y=2x=3

what does x when y=2x=3

Algebra word problem, The weight of an object on Planet A and the weight of...

The weight of an object on Planet A and the weight of the same object on the Planet B are proportional. An astronaut who weighs 160 pounds on Planet A weighs 26.7 pounds on Planet

Problems with fractions , The sum of the sides of a triangle is 9 2/9 inche...

The sum of the sides of a triangle is 9 2/9 inches.If the two sides measure 5/3 inches and 3 1/6 inches,find the measure of the third side

parametric equations, A motile cell is placed at the point (x0, y0) on a s...

A motile cell is placed at the point (x0, y0) on a square shaped dish filled with a "nutrient bath". The concentration of nutrient at any point (x, y) in the dish is given by N(

Sketch the graph parabolas, Sketch the graph parabolas. f (x ) = 2 ( x +...

Sketch the graph parabolas. f (x ) = 2 ( x + 3) 2   - 8 Solution In all of these we will just go through the procedure given above to determine the required points and t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd