Solve 6 sin ( x/2)= 1 on [-20,30], Mathematics

Assignment Help:

Solve 6 sin ( x/2)= 1 on [-20,30]

Solution

Let's first work out calculator of the way since that isn't where the difference comes into play.

sin( x/2)= 1/6   ⇒x/2= sin -1( 1/6)= 0.1674

Here's a unit circle for this instance.

246_circle29.png

To determine the second angle in this case we can notice that the line in the first quadrant makes an angle of 0.1674 with the +ve x-axis and hence the angle in the second quadrant will then make an angle of 0.1674 with the -ve x-axis and hence the angle that we're after is then,

π - 0.1674 =2.9742 .

Here's the rest of the solution for this instance.  We're going to assume from this point on that you can do this work without much explanation.

x/2= 0.1674  + 2π n  ⇒         x = 0.3348 + 4π n          n= 0, ±1, ±2,.......

x/2= 2.9742 ± 2π nx = 5.9484 ± 4π n

n= -2 :x =  -24.7980 and   -19.1844

n = -1 :x = -12.2316  and  -6.6180

n = 0    : x = 0.3348    and      5.9484

n = 1    : x =12.9012    and      18.5148

n = 2    :x = 25.4676   and      31.0812

The solutions to this equation are then,

 x = -19.1844, -12.2316, - 6.6180, 0.3348, 5.9484, 12.9012, 18.5128, 25.4676

Note that in the previous instance we only got a single solution. It happens on occasion thus don't get worried regarding it. Also, note that it was the second angle which gave this solution and hence if we'd just relied on our calculator without worrying regarding other angles we would not have gotten this solution.  Again, it can't be stressed sufficient that whereas calculators are a great tool if we don't understand how to properly interpret/use the result we can (and frequently will) get the solution wrong.

To this point we've only worked examples including sine & cosine. Nowlet's work a couple of instance that involves other trig functions to see how they work.


Related Discussions:- Solve 6 sin ( x/2)= 1 on [-20,30]

Fractions, How do you add 7/9 + 6/8 + 3/4

How do you add 7/9 + 6/8 + 3/4

Consumer behavior, explain big 5 ppersonality model, suggest thier target m...

explain big 5 ppersonality model, suggest thier target market and one marketing strategiy for each .

Differential equation - variation of parameters, Variation of Parameters ...

Variation of Parameters Notice there the differential equation, y′′ + q (t) y′ + r (t) y = g (t) Suppose that y 1 (t) and y 2 (t) are a fundamental set of solutions for

Proof of: limq?0 (cosq -1)/q = 0 trig limit, Proof of: lim q →0 (co...

Proof of: lim q →0 (cos q -1) / q = 0 We will begin by doing the following, lim q →0 (cosq -1)/q = lim q →0 ((cosq - 1)(cosq + 1))/(q (cosq + 1)) = lim q

Prove that 7cot - 3cosec = 3, If 7 cosec?-3cot? = 7, prove that 7cot? - 3co...

If 7 cosec?-3cot? = 7, prove that 7cot? - 3cosec? = 3. Ans:    7 Cosec?-2Cot?=7 P.T 7Cot? - 3 Cosec?=3 7 Cosec?-3Cot?=7 ⇒7Cosec?-7=3Cot? ⇒7(Cosec?-1)=3Cot? ⇒7(C

Numbers, use the distributive law to write each multiplication in a differe...

use the distributive law to write each multiplication in a different way. the find the answer. 12x14 16x13 14x18 9x108 12x136 20x147

Pigeonhole principle, By pigeonhole principle, show that if any five number...

By pigeonhole principle, show that if any five numbers from 1 to 8 are chosen, then two of them will add upto 9.    Answer: Let make four groups of two numbers from 1 to 8 like

Describe about parallel and perpendicular lines, Describe about Parallel an...

Describe about Parallel and Perpendicular Lines ? Parallel Lines : Parallel lines are coplanar lines (lines that lie in the same plane) that never intersect. The bl

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd