Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

Introduction to ones tens and more, INTRODUCTION :  We are often confronte...

INTRODUCTION :  We are often confronted with children not being able to deal with H T 0, i.e. 'hundreds', 'tens' and 'ones' (or 'units'), with comfort, though they are supposed to

Determine the distance, Two planes leave the airport at the similar time. M...

Two planes leave the airport at the similar time. Minutes later, plane A is 70 miles due north of the airport and plane B is 168 miles due east of the airport. Determine the distan

Explain multiples, Explain Multiples ? When a whole number is multiplie...

Explain Multiples ? When a whole number is multiplied by another whole number, the results you get are multiples of the whole numbers. For example,  To find the first four mult

value of integration , what is the value of integration limit n-> infinity...

what is the value of integration limit n-> infinity [n!/n to the power n]to the power 1/n Solution)  limit n-->inf.    [1 + (n!-n^n)/n^n]^1/n = e^ limit n-->inf.    {(n!-n^n)

Easy math margin percentage increase, If A = 100 and B = 44 then A1 =...

If A = 100 and B = 44 then A1 = 120 and B2 = 52.80 A is MAP and B is Tier 6. I need help to find a simple equation that I just cannot find. I just need the percentage

Applications of rational numbers, Kaylee makes 56 packages in seven hours T...

Kaylee makes 56 packages in seven hours Taylor makes 20% more packages in nine hours who makes more packages per hour

Straight Line, can i known the all equations under this lesson with explana...

can i known the all equations under this lesson with explanations n examples. please..

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd