Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

Bob is 2 years from being double as old as ellen, Bob is 2 years from being...

Bob is 2 years from being double as old as Ellen. The sum of twice Bob's age and three times Ellen's age is 66. How old is Ellen? Let x = Ellen's age and let y = Bob's age. Sin

Trigonometry 2, three towns are situated in such away that town B is 120 ki...

three towns are situated in such away that town B is 120 kilometers on a bearing of 030 degrees from town A. Town C is 210 kilometers on a bearing of 110 degrees from town A (a)ca

the jetstream''s speed, A passenger jet took 3 hours to fly 1800 km in the...

A passenger jet took 3 hours to fly 1800 km in the direction of the jetstream. The return trip against the jetstream took four hours. What was the jet's speed in still air and the

SHARES AND DIVIDEND, i am a student of class 10 and need help for making my...

i am a student of class 10 and need help for making my project on shares and dividend

Find out all the critical points and derivation, Find out all the critical ...

Find out all the critical points for the function. Solution Following is the derivative for this function. Now, this looks unpleasant, though along with a little fa

Possible outcome of a coin - probability based question, A coin is tossed t...

A coin is tossed twice and the four possible outcomes are assumed to be equally likely. If A is the event,  both head and tail have appeared , and B be the event at most one tail i

Discontinuous integrand- integration techniques, Discontinuous Integrand- I...

Discontinuous Integrand- Integration Techniques Here now we need to look at the second type of improper integrals that we will be looking at in this section.  These are integr

Example of regression equation, Example of Regression Equation An inve...

Example of Regression Equation An investment company advertised the sale of pieces of land at different prices. The given table shows the pieces of land their costs and acreag

Loan amortisation problem, On 30 June 2012 Bill purchase a home by taking o...

On 30 June 2012 Bill purchase a home by taking out a 30 year mortgage of $600,000 at 6% interest per annum, compounded months. Repayments are made at the end of each month. (a) Cal

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd