Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

Probability., an insurance salesman sells policies to 5 men, all of identic...

an insurance salesman sells policies to 5 men, all of identical age in good health. the probability that a man of this particular age will be alive 30 years hence is 2/3.Find the p

Decision tree analysis, DECISION TREE ANALYSIS The Finance Manager of ‘...

DECISION TREE ANALYSIS The Finance Manager of ‘Softy’ baby soap manufacturing company being successful in the first two years of the company’s operations is considering to set

Relating addition and subtraction, RELATING ADDITION AND SUBTRACTION :  In...

RELATING ADDITION AND SUBTRACTION :  In the earlier sections we have stressed the fact that to help children understand addition or subtraction, they need to be exposed to various

Find the curve on the surface - shortest arc lenght, (a) Find the curve on ...

(a) Find the curve on the surface z=x 3/2 joining the points(x,y,z)=(0,0,0) and (1,1,1) has the shortest arc lenght? (b) Use a computer to produce a plot showing the surface an

Integers, Explain with the help of number line (-6)+(+5)

Explain with the help of number line (-6)+(+5)

Free Assignment Test Online, Well, my uncle want me to tutor him in mathema...

Well, my uncle want me to tutor him in mathematics. But, the problem is I don''t know what he already knows about math. It for his Compass Test when he go back to school in the spr

Division of two like terms, Case 1: Suppose we have two terms 8ab and 4ab. ...

Case 1: Suppose we have two terms 8ab and 4ab. On dividing the first by the second we have 8ab/4ab = 2 or 4ab/8ab = (1/2) depending on whether we consider either 8ab or 4ab as the

Probability, an insurance salesman sells policies to 5 men, all of identica...

an insurance salesman sells policies to 5 men, all of identical age in good health. the probability that a man of this particular age will be alive 20 years hence is 2/3.Find the p

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd