Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

Explain comparing mixed numbers in maths, Explain Comparing Mixed Numbers i...

Explain Comparing Mixed Numbers in maths? A mixed number is made up of two parts: a whole number and a fraction. For example: 2(3/4) 2(3/4) is read "two and three-fourths

Trigonometry, can you explain it to me please

can you explain it to me please

Shares and dividend, write a short note on shares and dividend under the fo...

write a short note on shares and dividend under the following heading: shares ,type of shares,face/nominal value of shares.

Lorie, A bourbon that is 51 proof is 25.5% alcohol by volume while one that...

A bourbon that is 51 proof is 25.5% alcohol by volume while one that is 82 proof is 41% alcohol. How many liters of 51 proof bourbon must be mixed with 1.0 liter of 82 proof bourbo

Line plots, how to you find the difference between different line plots

how to you find the difference between different line plots

Simpson rule - approximating definite integrals, Simpson's Rule - Approxima...

Simpson's Rule - Approximating Definite Integrals This is the last method we're going to take a look at and in this case we will once again divide up the interval [a, b] int

Closure : Activity 5.4, A classmate mixes 2 drops of red food coloring for ...

A classmate mixes 2 drops of red food coloring for every 4 drops of blue food coloring. Create a ratio table with 5 entries to represent this situation. Write the entries of the ra

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd