Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

Finding absolute extrema of f(x) on [a, Finding Absolute Extrema of f(x) on...

Finding Absolute Extrema of f(x) on [a,b] 0.   Confirm that the function is continuous on the interval [a,b]. 1.  Determine all critical points of f(x) which are in the inte

Find out the value of the subsequent summation, Using the formulas and prop...

Using the formulas and properties from above find out the value of the subsequent summation. c The first thing that we require to do here is square out the stuff being summe

Determine the largest possible domain and inverse function, Consider the fu...

Consider the function f(x) =1/2 (2 x +2 -x ) which has the graph (a) Explain why f has no inverse function. You should include an example to support your explanation

Houses having the floor , Suppose you are in the market for a new home and ...

Suppose you are in the market for a new home and are interested in a new housing community under construction in a another city. a) The sales representative informs you that the

Geometry, can i get some triangle congruence proofs help?

can i get some triangle congruence proofs help?

Lower than average, A local police precinct has seen a recent enhance in th...

A local police precinct has seen a recent enhance in the number of complaints filed regarding how officers are interacting with the public. Before addressing the issue, the command

Least cost method in operations research, algorithm and numerical examples ...

algorithm and numerical examples of least cost method

Total linear attenuation, Consider the task of identifying a 1 cm thick bre...

Consider the task of identifying a 1 cm thick breast cancer that is embedded inside a 4.2 cm thick fibroglandular breast as depicted in Fig. The cancerous tumor has a cross

Calculate the total surface area which is exposed , A golf ball has a diame...

A golf ball has a diameter equal to 4.1cm. Its surface has 150 dimples each of radius 2mm. Calculate the total surface area which is exposed to the surroundings assuming that the d

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd