Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

Ecercises, ne nje tabak letre me permasa 100cm dhe 55cm nje nxenes duhet te...

ne nje tabak letre me permasa 100cm dhe 55cm nje nxenes duhet te ndertoje nje kuboide me permasa 20cm,25cm,40cm. a mund ta realizoje kete, ne qofte se per prerjet dhe ngjitjet humb

Example of word problem, Example of Word problem: There is a man who i...

Example of Word problem: There is a man who is 21 years older than his son.  5 years ago he was four times as old as his son. How older are both now? Solution: Step 1

Applications of de moiver, what are the applications of de moiver''s theore...

what are the applications of de moiver''s theorem in programming and software engineering

Factors, Question Suppose that f(x) has (x - 2) 2 and (x + 1) as its on...

Question Suppose that f(x) has (x - 2) 2 and (x + 1) as its only factors. Sketch the graph of f. State all the zeros of f.

Recognize the importance of famous numbers, Activity This activity will ...

Activity This activity will help you recognize the importance of some very famous numbers, as well as learn more about approximations. Directions Using the Internet, provi

Class 10, chapter permutation & combination ex :4.6

chapter permutation & combination ex :4.6

Evaluate the circumference of circle, If the diameter of a circle is triple...

If the diameter of a circle is tripled times, the circumference is a. multiplied by 3. b. multiplied by 6. c. multiplied by 9. d. multiplied by 12. a. The formula fo

Determine the area of the book jacket, A publishing company is creating a b...

A publishing company is creating a book jacket for a newly published textbook. Determine the area of the book jacket, given that the front cover is 8 in wide by 11 in high, the bin

Describe about parallel and perpendicular lines, Describe about Parallel an...

Describe about Parallel and Perpendicular Lines ? Parallel Lines : Parallel lines are coplanar lines (lines that lie in the same plane) that never intersect. The bl

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd