Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

Demonstrates that f ( x ) = 4 x5 + x3 + 7 x - 2 mean value, Demonstrates th...

Demonstrates that f ( x ) = 4 x 5 + x 3 + 7 x - 2 has accurately one real root. Solution From basic Algebra principles we know that since f (x) is a 5 th degree polynomi

Augmented matrix, Consider the following system of linear equations. X 1...

Consider the following system of linear equations. X 1 +x 3 +x 4 = 2 X 1 +x 2 +x 3 = 6 X 2 +x 3 +x 4 = 3 X 1 +x 2 +x 4 = 0  (a) Write out the augmented matrix fo

Market testing, what are the dangers of not market testing a product

what are the dangers of not market testing a product

The low temperature in Achorage, The low temperature in Anchorage, Alaska t...

The low temperature in Anchorage, Alaska today was negative four degrees. The low temperature in Los Angeles, California was sixty-three degreees. What is the difference in the two

Permutation, A train goin from delhi to jaipur stops at 7 intermediate stat...

A train goin from delhi to jaipur stops at 7 intermediate stations. 5 persons enter the train during the journey with 5 difefrent tickets of same class . How mant different set of

Sum of a number of terms in a.p., We know that the terms in an ...

We know that the terms in an A.P. are given by a, a + d, a + 2d, a + 3d, ........ a + (n - 2)d, a + (n -  1)d The sum of all t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd