Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

Evaluate the area of the shaded region, Using the example provided, Evaluat...

Using the example provided, Evaluate the area of the shaded region in terms of π. a. 264 - 18π b. 264 - 36π c. 264 - 12π d. 18π- 264 b. The area of the shaded r

School mathematics, I am interested in school mathematics online assignment...

I am interested in school mathematics online assignments , homework help, projects etc. I have good knowledge of mathematics and experience of 15+ years teaching mathematics in cen

Standard trig equation, "Standard" trig equation: Now we need to move into...

"Standard" trig equation: Now we need to move into a distinct type of trig equation. All of the trig equations solved to this point were, in some way, more or less the "standard"

difference between two sample means (large sample), Testing The Difference...

Testing The Difference Between Two Sample Means (Large Samples) A large sample is defined as one which have 30 or more items as n≥30 whereas n is the sample size In a busine

Function notation, Function notation: Next we have to take a rapid look at...

Function notation: Next we have to take a rapid look at function notation. Function notation is nothing more than way of writing the y in a function which will let to simplify not

Faltings theorem, What is Faltings Theorem? Explain Faltings Theorem

What is Faltings Theorem? Explain Faltings Theorem

Probability, The probability that a leap year will have 53 sunday is ? and ...

The probability that a leap year will have 53 sunday is ? and how please explain it ? (a)1/7    (b) 2/7    (c) 5/7    (d)6/7 Sol) A leap year has 366 days, therefore 52 weeks i.e

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd