Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

Proof of root test - sequences and series, Proof of Root Test  Firstly...

Proof of Root Test  Firstly note that we can suppose without loss of generality that the series will initiate at n = 1 as we've done for all our series test proofs.  As well n

Extreme value theorem, Extreme Value Theorem : Assume that f ( x ) is cont...

Extreme Value Theorem : Assume that f ( x ) is continuous on the interval [a,b] then there are two numbers a ≤ c, d ≤ b so that f (c ) is an absolute maximum for the function and

How do you find the second minimum spanning tree of a graph, How do you fin...

How do you find the second minimum spanning tree of a graph?  Find the second minimum spanning tree of the following graph.  Ans: The second minimum spanning tree is acq

Statistic, Suppose that the probability of your favorite baseball player ge...

Suppose that the probability of your favorite baseball player getting a hit at bat is 0.45. Assume that each at bat is independent. What is the probability that he bats eight times

Linear programming problem, I have a linear programming problem that we are...

I have a linear programming problem that we are to work out in QM for Windows and I can''t figure out how to lay it out. Are you able to help me if I send you the problem?

Decision trees and sub sequential decisions, Decision Trees And Sub Sequent...

Decision Trees And Sub Sequential Decisions A decision tree is a graphic diagram of different decision alternatives and the sequence of events like if they were branches of a t

Solve the value of x and y , 7(y + 3) - 2(x + 2) = 14, 4 (y - 2) + 3(x ...

7(y + 3) - 2(x + 2) = 14, 4 (y - 2) + 3(x - 3) = 2 Ans:    7(y + 3) - 2 (x+ 2) = 14          --------- (1) 4(y- 2) + 3(x - 3) = 2 ----------(2) From (1) 7y +21 -

An initial species population , An initial species population is y(0) = 300...

An initial species population is y(0) = 3000. At t=0 the population starts to grow exponentially with a doubling time of 2 years. Mark the only correct statement: a)    The per

Calculate zeros in the denominator of rational expressions, About Zeros in ...

About Zeros in the Denominator of Rational Expressions One thing that you must be careful about when working with rational expressions is that the denominator can never be zero

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd