Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

The achievements from math, i love math..but i am afraid to study it... i m...

i love math..but i am afraid to study it... i mean i ma afraid that it may leave me in clay...what can you suggest me?

Proof of limit comparison test - sequences and series, Proof of Limit Compa...

Proof of Limit Comparison Test As 0  Now, as   we know that for large enough n the quotient a n /b n should be close to c and thus there must be a positive integer

Calculate values of the derivative, First, see that the right hand side of ...

First, see that the right hand side of equation (2) is a polynomial and thus continuous. This implies that this can only change sign if this firstly goes by zero. Therefore, if the

If an item costs $1.45 to what amount will louise round, Louise is estimati...

Louise is estimating the cost of the groceries in her cart. She rounds the cost of every item to the nearest dollar to form her calculations. If an item costs $1.45, to what amount

Activity on Node, schedulling problem with variability in task times

schedulling problem with variability in task times

What are factor trees explain, What are Factor Trees explain? In algebr...

What are Factor Trees explain? In algebra, we often need to factor a number into its prime factors. One way to do this is to use a factor tree. This is a network of numbers, st

Tangents, case 2:when center is not known proof

case 2:when center is not known proof

What is addition rule of probability, Q. What is Addition Rule of probabili...

Q. What is Addition Rule of probability? Ans. Suppose there are 17 girls and 15 boys in your stats class. There are 17 + 15 = 32 ways for your teacher to pick one student

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd