Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

Reduced Row-Echelon Form, The augmented matrix from a system of linear equa...

The augmented matrix from a system of linear equations has the following  reduced row-echelon form (a)  How many equations are there in the system?  (b)  How many variab

Hcf and lcm, The HCF & LCM of two expressions are respectively (x+3) and (x...

The HCF & LCM of two expressions are respectively (x+3) and (x cube-7x+6). If one is x square+2x-3 , other is? Solution) (x+3) * (x^3-7x+6) = (x^2+2x-3) * y      ( ) (HCF*LCM=

Descrbe about arithmetic and geometric sequences, Descrbe about Arithmetic ...

Descrbe about Arithmetic and Geometric Sequences? When numbers are listed according to a particular pattern, we call the list a sequence. In a sequence, the numbers are separat

Describe square roots, Describe Square Roots? When a number is written ...

Describe Square Roots? When a number is written inside a radical sign (√), the number is called the radicand, and we say that you are "taking the square root of" that number.

How many solutions are there for differential equation, If a differential e...

If a differential equation does have a solution how many solutions are there? As we will see ultimately, this is possible for a differential equation to contain more than one s

How to calculate probability of event, Q. How to calculate Probability of e...

Q. How to calculate Probability of event? Ans. What chance do I have to toss the coin and get a head? You might think 50-50, 50%. What about tossing it 5 times and getting

MENSURATION, HOW TO FIND THE HEIGHT OF A CYLINDER I NEED IT FOR ASSIGNMENT ...

HOW TO FIND THE HEIGHT OF A CYLINDER I NEED IT FOR ASSIGNMENT TO BE SUBMITTED BY 8;00 AM

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd