Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

Three person problem of points, Three-person Problem of Points: Pascal, Fer...

Three-person Problem of Points: Pascal, Fermat and their old friend the Chevalier de Mere each put $10.00 into a pot, and agree to play a game that has rounds. Each player has the

Online tutoring, how can i find the online students ?

how can i find the online students ?

Limits at infinity part ii, Limits At Infinity, Part II :  In this sectio...

Limits At Infinity, Part II :  In this section we desire to take a look at some other kinds of functions that frequently show up in limits at infinity.  The functions we'll be di

Determine the distance, Two planes leave the airport at the similar time. M...

Two planes leave the airport at the similar time. Minutes later, plane A is 70 miles due north of the airport and plane B is 168 miles due east of the airport. Determine the distan

Rules of game theory, Rules Of Game Theory i.   The number of competito...

Rules Of Game Theory i.   The number of competitors is finite ii.   There is conflict of interests among the participants iii.  Each of these participants has available t

Indices, advantages and disadvantages of paasche and laspeyres indices

advantages and disadvantages of paasche and laspeyres indices

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd