Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

Management, Discuss demanding total market demand verus gaing market share

Discuss demanding total market demand verus gaing market share

Monotonic, Monotonic, Upper bound and lower bound Given any sequence {a...

Monotonic, Upper bound and lower bound Given any sequence {a n } we have the following terminology: 1.   We call or denote the sequence increasing if a n n+1 for every n.

Examining a related problem, how to explain this strategy? how to do this s...

how to explain this strategy? how to do this strategy in solving a problem? can you give some example on how to solve this kind of strategy.

Analalitic geometry, 1. Write down the canonical equations of the line pass...

1. Write down the canonical equations of the line passing through the point A(2,3, 4) and being parallel to the vector q ={5,0,-1}.

If the squared difference of the zeros find the value of p, If the squared ...

If the squared difference of the zeros of the quadratic polynomial x 2 + p x + 45 is equal to 144 , find the value of p.

Michael has 16 cds how many cds does kathleen have, Michael has 16 CDs. Th...

Michael has 16 CDs. This is four more than twice the amount that Kathleen has. How many CDs does Kathleen have? Let x = the number of CDs Kathleen has. Four more than twice th

What day?, together, pearl and harvey are going to visit their aunt on sund...

together, pearl and harvey are going to visit their aunt on sunday. If Pearl visits their aunt every 6 days, while harvey every 8 days, on what day will they visit their aunt toget

profit & loss, A sell a watch to B at gain of 20% and B sell to C at loss ...

A sell a watch to B at gain of 20% and B sell to C at loss of 10%. if C pays @ 432, how much did A pays for it.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd