Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

Trigonometry, explain the formular for finding trigonometry

explain the formular for finding trigonometry

Geometry problems, if a circles diameter is 42 mm its radius is ___________...

if a circles diameter is 42 mm its radius is _________________ because ________________________.

Evaluate the circumference of circle, If the diameter of a circle is triple...

If the diameter of a circle is tripled times, the circumference is a. multiplied by 3. b. multiplied by 6. c. multiplied by 9. d. multiplied by 12. a. The formula fo

Solve sin (3t ) = 2 trig function, Solve sin (3t ) = 2 . Solution T...

Solve sin (3t ) = 2 . Solution This example is designed to remind you of certain properties about sine and cosine.  Recall that -1 ≤ sin (θ ) ≤ 1 and -1 ≤ cos(θ ) ≤ 1 .  Th

Difererntial equation, Ask queFind the normalized differential equation whi...

Ask queFind the normalized differential equation which has {x, xex} as its fundamental setstion #Minimum 100 words accepted#

Pair of linear equations in two variables, a lending library has a fixed ch...

a lending library has a fixed charge for the first three days and an additional charge for each day thereafter. sam paid Rs 27 for a bookkept for 7 days while jaan paid Rs 21 for t

Contravariant vector, Ask question #suppose that components of a contravari...

Ask question #suppose that components of a contravariant vector A^i (for n=3)in the coordinate system (x^1,x^2,...,x^n) are A=x,A=y,A=z.Find the components A^p of the vector in the

Linear equations, A police academy is training 14 new recruits. Some are wo...

A police academy is training 14 new recruits. Some are working dogs and others are police officers. There are 38 legs in all. How many of each type of recruits are there?

Area and perimeter, a garden is constructed with a 3ft patio all around how...

a garden is constructed with a 3ft patio all around how would you give the expression for the area of the garden, excluding the patio

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd