Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

How long will the board be after he makes the cut, Tom is cutting a piece o...

Tom is cutting a piece of wood to form a shelf. He cut the wood to 3.5 feet, but it is too long to fit in the bookshelf he is forming. He decides to cut 0.25 feet off the board. Ho

Evaluate this integral value, The base of a right cylinder is the circle in...

The base of a right cylinder is the circle in the xy -plane with centre O and radius 3 units. A wedge is obtained by cutting this cylinder with the plane through the y -axis in

Show that p ( x ) = 2 x3 - 5x2 -10 x + 5 intermediate value , Example   Sh...

Example   Show that p ( x ) = 2 x 3 - 5x 2 -10 x + 5 has a root somewhere in the interval [-1,2]. Solution What we're actually asking here is whether or not the function wi

Solving an equation using multiplication and division, Solving an equation ...

Solving an equation using Multiplication and Division       A variable is a symbol that represents a number. Usually we use the letters like n , t , or x for variables. For

Divides a given line segment internally in the ratio of 1:3, Divides a give...

Divides a given line segment internally in the ratio of 1:3 Construction : i )Draw a ray AX making an acute angle with AB. ii) Mark 4 points at equal distance. on AX Let

Statistics., the mean and standarddeviation of set a is -x ans s respective...

the mean and standarddeviation of set a is -x ans s respectively.find the mean and standard deviation of set b

If the squared difference of the zeros find the value of p, If the squared ...

If the squared difference of the zeros of the quadratic polynomial x 2 + p x + 45 is equal to 144 , find the value of p.

Multiply the polynomials, Multiply following. (a) (4x 2 -x)(6-3x) (b)...

Multiply following. (a) (4x 2 -x)(6-3x) (b) (2x+6) 2 Solution  (a) (4x 2 - x )(6 - 3x ) Again we will only FOIL this one out. (4x 2  - x )(6 - 3x) = 24x 2 -

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd