Solutions to systems, Mathematics

Assignment Help:

Now that we've found some of the fundamentals out of the way for systems of differential equations it's time to start thinking about how to solve a system of differential equations. We will begin with the homogeneous system written in matrix form as,

x?' = A x?    ......................(1)

Here, A is an n x n matrix and x is a vector whose elements are the unknown functions into the system.

Here, if we begin with n = 1 then the system decreases to a fairly easy linear or separable first order differential equation,

x' = ax

And it has the following solution,

 x′ = ax

x (t) =  ceat

Therefore, let's use this as a guide and for a common n let's notice if,

x? (t) = ?h   ert    .................(2)

It will be a solution. Remember that the only real difference now is which we let the constant in front of the exponential be a vector. All we requirement to do then is plug it into the differential equation and notice what we find.  First see that the derivative is,

x? (t) = r ?hert   

Therefore upon plugging the guess in the differential equation we find,

r ?hert = A ?hert

(A - rI) ?hert =0?

Here, as we know that exponentials are not zero we can drop which portion and we after that see that so as for (2) to be a solution to (1) so we should have,

(A - rI) ?h = 0?

Or, so as for (2) to be a solution to (1), r and ?h should be an eigen-value and eigenvector for the matrix A.

Thus, so as to solve (1) we first get the eigen-values and eigenvectors of the matrix A and after that we can form solutions by using (2). There are going to be three cases which we'll require to look at.

The cases are as: real, distinct eigenvalues, complex eigenvalues and repeated eigenvalues.

None of that tells us how to wholly solve a system of differential equations. We'll require the subsequent couple of facts to do this.


Related Discussions:- Solutions to systems

Discrete math, ) Show that the following argument is valid: (~p ? q) =>...

) Show that the following argument is valid: (~p ? q) => r s ? ~q ~t p => t (~p ? r) => ~s ------------------------ ? ~q 2) Show that the following argum

Geometry, how do we rotate an object 90 counterclockwise?

how do we rotate an object 90 counterclockwise?

Conclusion of egroff''s theorem and lusin''s theorem, (1) Show that the con...

(1) Show that the conclusion of Egroff's theorem can fail if the measure of the domain E is not finite. (2) Extend the Lusin's Theorem to the case when the measure of the domain E

Approximating definite integrals - integration techniques, Approximating De...

Approximating Definite Integrals - Integration Techniques In this section we have spent quite a bit of time on computing the values of integrals. Though, not all integrals can

What is factoring of polynomials, What is Factoring of Polynomials? Fac...

What is Factoring of Polynomials? Factoring means much the same thing for polynomials as it does for integers. When you multiply several polynomials together, The polyn

Draw the bipartite graph, The graph C n , n  ≥  3 contains n vertices and n...

The graph C n , n  ≥  3 contains n vertices and n edges creating a cycle. For what value of n is C n a bipartite graph? Draw the bipartite graph of C n to give explanation for yo

The definite integral- area under a curve, The Definite Integ...

The Definite Integral Area under a Curve If there exists an irregularly shaped curve, y = f(x) then there is no formula to find out

Solve 6 sin ( x/2)= 1 on [-20, Solve 6 sin ( x/2)= 1 on [-20,30] Soluti...

Solve 6 sin ( x/2)= 1 on [-20,30] Solution Let's first work out calculator of the way since that isn't where the difference comes into play. sin( x/2)= 1/6   ⇒x/2= sin

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd