Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Solve the subsequent IVP.
dv/dt = 9.8 - 0.196v; v(0) = 48
Solution
To determine the solution to an Initial Value Problem we should first determine the general solution to the differential equation and after that use the initial condition to recognize the precise solution which we are after. Thus, since this is the similar differential equation as we looked at in Illustration 1, we previously have its general solution.
v(t) = 50 + ce-0.196t
Currently, to determine the solution we are after we require identifying the value of c which will give us the solution we are after. To do such we simply plug in the first condition that will provide us an equation we can resolve for c. Thus let's do this as:
48 = v () = 50 + c ⇒ c = -2
Therefore, the actual solution to the Initial Value Problem is.
v(t) = 50 - 2 e-0.196t
A graph of this solution can be observed in the figure above.
Let's do a couple of illustrations which are a little more included.
Comparison Test Assume that we have two types of series ∑a n and ∑b n with a n , b n ≥ 0 for all n and a n ≤ b n for all n. Then, A. If ∑b n is convergent then t
29x27
there are
What is the Vertex Form for a Quadratic Equation ? The vertex form for a quadratic function is as follows: f(x) = a(x - h) 2 + k The graph of this function Is a parabola whos
for all real numbers x, x 0
Objectives After studying this unit, you should be able to 1. evolve and use alternative activities to clarify the learner's conceptual 2. understanding of ones/tens/hu
i don''t understand what my teacher when she talks about when she talks about cosecutive integers etc... so can u help me???
I need an explanation of "the integral, from b to a, of the derivative of f (x). and, the integral from a to b. of the derivative of f(t) dt.
Q. What is a Negative Number? Ans. Negative numbers are very important in mathematics. We say that positive and negative numbers are opposites of one another. Here
Hyperbolic Paraboloid- Three Dimensional Space The equation which is given here is the equation of a hyperbolic paraboloid. x 2 / a 2 - y 2 / b 2 = z/c Here is a dia
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd