Solution to an initial value problem, Mathematics

Assignment Help:

Solve the subsequent IVP.

dv/dt = 9.8 - 0.196v;               v(0) = 48

Solution

To determine the solution to an Initial Value Problem we should first determine the general solution to the differential equation and after that use the initial condition to recognize the precise solution which we are after. Thus, since this is the similar differential equation as we looked at in Illustration 1, we previously have its general solution.

v(t) = 50 + ce-0.196t

Currently, to determine the solution we are after we require identifying the value of c which will give us the solution we are after. To do such we simply plug in the first condition that will provide us an equation we can resolve for c. Thus let's do this as:

48 = v () = 50 + c ⇒ c = -2

Therefore, the actual solution to the Initial Value Problem is.

v(t) = 50  - 2 e-0.196t

A graph of this solution can be observed in the figure above.

Let's do a couple of illustrations which are a little more included.


Related Discussions:- Solution to an initial value problem

In sequence to remain the pole perpendicular to the ground, A cable is atta...

A cable is attached to a pole 24 ft above ground and fastened to a stake 10 ft from the base of the pole. In sequence to remain the pole perpendicular to the ground, how long is th

Market orientation, what is market orientation? what is the importance of ...

what is market orientation? what is the importance of market orientation?what are its implementation?

Plane figures, what are the formulas for finding the area and volume of pla...

what are the formulas for finding the area and volume of plane figures

Find the average, The center of a national park is located at (0,0). A spec...

The center of a national park is located at (0,0). A special nature preserve is bounded by by straight lines connecting the points A at (3,2), B at (5,1), C at (8,4) and D at (6,5)

Two circles touch each other externally, Two circles touch each other exter...

Two circles touch each other externally: Given: Two circles with respective centres C1 and C2 touch each other externaly at the point P. T is any point on the common tangent

the jetstream''s speed, A passenger jet took 3 hours to fly 1800 km in the...

A passenger jet took 3 hours to fly 1800 km in the direction of the jetstream. The return trip against the jetstream took four hours. What was the jet's speed in still air and the

Solve -10 cos(3t )= 7 on [-2, Solve -10 cos(3t )= 7 on [-2,5]. Solution...

Solve -10 cos(3t )= 7 on [-2,5]. Solution Let's first get the inverse cosine portion of this problem taken care of. cos(3 t )= -  7/10            ⇒     3t = cos -1 ( - 7

Multiplication and division, you want to share 34 pencils among 6 friends ....

you want to share 34 pencils among 6 friends .How many would each friend get?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd