Solution process of linear differential equations, Mathematics

Assignment Help:

For a first order linear differential equation the solution process is as given below:

1. Place the differential equation in the correct initial form, (1).

2. Determine the integrating factor, µ (t) and using (10).

3. Multiply everything in the differential equation through µ (t) and verify that the left side turns into the product rule (µ (t) y(t))' and write this as such.

4.   Integrate both sides; ensure you properly deal along with the constant of integration.

5.   Resolve for the solution y(t).


Related Discussions:- Solution process of linear differential equations

Integration, Integrate ((cosx)*(sinx))/(sin(2x)) with respect to x

Integrate ((cosx)*(sinx))/(sin(2x)) with respect to x

Capture a curvature in the relationship - quadratic model, 1. Consider the ...

1. Consider the model Y t = β 0 + β 1 X t + ε t , where t = 1,..., n.  If the errors ε t are not correlated, then the OLS estimates of  β 0   and β

How to multiply two fractions, Q. How to Multiply two Fractions? Multip...

Q. How to Multiply two Fractions? Multiplying fractions is really easy! The rule is: "multiply across"- You multiply the numerators, and you multiply the denominators.

Find the are length and sketch the level curves, 1) Find the are length of ...

1) Find the are length of r(t) = ( 1/2t^2, 1/3t^3, 1/3t^3) where t is between 1 and 3 (greater than or equal less than or equal) 2) Sketch the level curves of f(x,y) = x^2-2y^2

Calculate combinations and permutations, a. Cassie has seven skirts, five b...

a. Cassie has seven skirts, five blouses, and ten pairs of shoes. How many possible outfits can she wear? b. Cassie decides that four of her skirts should not be worn to school.

Solve the algebraic equestions, Solve the following equestions i.2x-8=8 ...

Solve the following equestions i.2x-8=8 ii.3x+2/5=4 iii.8/3x-2=2 iv.0.6x-5=7

Proof of root test - sequences and series, Proof of Root Test  Firstly...

Proof of Root Test  Firstly note that we can suppose without loss of generality that the series will initiate at n = 1 as we've done for all our series test proofs.  As well n

Linear independence and dependence, It is not the first time that we've loo...

It is not the first time that we've looked this topic. We also considered linear independence and linear dependence back while we were looking at second order differential equation

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd