Solution process of linear differential equations, Mathematics

Assignment Help:

For a first order linear differential equation the solution process is as given below:

1. Place the differential equation in the correct initial form, (1).

2. Determine the integrating factor, µ (t) and using (10).

3. Multiply everything in the differential equation through µ (t) and verify that the left side turns into the product rule (µ (t) y(t))' and write this as such.

4.   Integrate both sides; ensure you properly deal along with the constant of integration.

5.   Resolve for the solution y(t).


Related Discussions:- Solution process of linear differential equations

Circles, alternate segment theorum

alternate segment theorum

Method to solve binomials of second degree, In this part we look at a...

In this part we look at another method to obtain the factors of an expression. In the above you have seen that x 2 - 4x + 4 = (x - 2) 2 or (x - 2)(x - 2). If yo

Describe about parallel and perpendicular lines, Describe about Parallel an...

Describe about Parallel and Perpendicular Lines ? Parallel Lines : Parallel lines are coplanar lines (lines that lie in the same plane) that never intersect. The bl

What is the volume of the frustum, If the areas of the circular bases of a ...

If the areas of the circular bases of a frustum of a cone are 4cm 2 and 9cm 2 respectively and the height of the frustum is 12cm. What is the volume of the frustum. (Ans:44cm 2 )

Spherical coordinates - three dimensional space, Spherical Coordinates - Th...

Spherical Coordinates - Three Dimensional Space In this part we will introduce spherical coordinates. Spherical coordinates which can take a little getting employed to.  It's

Relationship between the shortest path distances - tree, 1. a)  Given a dig...

1. a)  Given a digraph G = (V,E), prove that if we add a constant k to the length of every arc coming out from the root node r, the shortest path tree remains the same.  Do this by

Solve the initial value by laplace transform method, Question: Solve the i...

Question: Solve the initial value problem 2x'' +x'-x =27 Cos2t +6 Sin 2t, x(0)=2 , x'(0)= -2 by using Laplace transform method.

Determine the length of the longer base, The longer base of a trapezoid is ...

The longer base of a trapezoid is 3 times the shorter base. The nonparallel sides are congruent. The nonparallel side is 5 cm more that the shorter base. The perimeter of the trape

Calculus, using 5 rectangles what is the area under a curve using the funct...

using 5 rectangles what is the area under a curve using the function f(x)=3x+4 and boundries [0,2]

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd