SOLID MENSURATION, Mathematics

Assignment Help:
The base of an isosceles triangle and the altitude drawn from one of the congruent sides are equal to 18cm and 15cm, respectively. Find the lengths of the sides of the triangle.

Related Discussions:- SOLID MENSURATION

Strategic , Hi need a help for marketing strategic assignment Could you ab...

Hi need a help for marketing strategic assignment Could you able to help me???

Area under curve, w/ You could use this sample code to test your C function...

w/ You could use this sample code to test your C functions // Please make appropriate changes to use this for C++. // Following main function contains 3 representative test cases

Math project , Topic 1: Statistical Studies Find two different news storie...

Topic 1: Statistical Studies Find two different news stories in a mainstream media source (CNN, FoxNews, Newsweek, etc.), that cite data from a recognized poling agency. Locate th

Unit normal vector - three dimensional space, Unit Normal Vector - Three Di...

Unit Normal Vector - Three Dimensional Space The unit normal vector is illustrated to be, N (t) = → T' (t) / (|| T → ' (t)||) The unit normal is orthogonal or normal or

Sqares, Recently I had an insight regarding the difference between squares ...

Recently I had an insight regarding the difference between squares of sequential whole numbers and the sum of those two whole numbers. I quickly realized the following: x + (x+1)

Scalar equation of plane - three dimensional spaces, Scalar Equation of Pla...

Scalar Equation of Plane A little more helpful form of the equations is as follows. Begin with the first form of the vector equation and write a vector for the difference. {

Find the surface-radius of earth, a) The distance d that can be seen fro...

a) The distance d that can be seen from horizon to horizon from an airplane varies directly as the square root of the altitude h of the airplane. If d = 213 km for h = 3950

Find the integral of a function, We want to find the integral of a function...

We want to find the integral of a function at an arbitrary location x from the origin. Thus, where I(x=0) is the value of the integral for all times less than 0. (Essenti

#t, show that a*0=a

show that a*0=a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd