Small samples-estimation of population mean , Mathematics

Assignment Help:

Estimation of population mean

If the sample size is small (n<30) the arithmetic mean of small samples are not normally distributed. In such conditions, student's t distribution must be utilized to estimate the population mean.

In this case

Population mean µ = x¯ ±  tS

 x¯ = Sample mean

S =  s/√n

S = standard deviation of samples = 1985_Estimation of population mean.png

for small samples.

n = sample size

v = n - 1 degrees of freedom.

The value of t is acquired from student's t distribution tables for the essential confidence level

Illustration

A random sample of 12 items is taken and is found to have a mean weight of 50 gram and a standard deviation of 9 gram

What is the mean weight of population

a)         Along with 95 percent confidence

b)         Along with 99 percent confidence

Solution

   S = 9; v = n - 1 = 12 - 1 = 11;          

S= s/√n = 9/√12        

µ = x¯ ± t S 

At 95 percent confidence level

µ = 50 ± 2.262

= 50 ± 5.72 grams

Hence we can state with 95 percent confidence that the population mean is among 44.28 and 55.72 gram

At 99 percent confidence level

µ = 50 ± 3.25 (9/√12)

= 50 ± 8.07 gram

 Therefore we can state with 99 percent confidence that the population mean is between 41.93 and 58.07 grams

Note: To employ the t distribution tables it is significant to find the degrees of freedom (v = n - 1). In the illustration above v = 12 - 1 = 11

From the tables we find that at 95 percent confidence level against 11 and under 0.05, the value of t = 2.201

 


Related Discussions:- Small samples-estimation of population mean

Given x+1/x=2cosy then find x^n +1/x^n, Here we know x can only be 1 or -1...

Here we know x can only be 1 or -1. so if it is 1 ans is 2. if x is -1, for n even ans will be 2 if x is -1 and n is odd ans will ne -2. so we can see evenfor negative x also an

Squeeze theorem (sandwich theorem and the pinching theorem), Squeeze Theore...

Squeeze Theorem (Sandwich Theorem and the Pinching Theorem) Assume that for all x on [a, b] (except possibly at x = c ) we have,                                 f ( x )≤ h (

Problem solving sentence, a cheeseburger cost $6.39 more than a burger of $...

a cheeseburger cost $6.39 more than a burger of $2.29, what is the difference?

What is the probability that they will both come to a party, Q.  Suppose th...

Q.  Suppose the probability of David coming to a party is 75% and the probability of Jason coming to a party is 85%. What is the probability that they will both come to a party, a

What is factoring of polynomials, What is Factoring of Polynomials? Fac...

What is Factoring of Polynomials? Factoring means much the same thing for polynomials as it does for integers. When you multiply several polynomials together, The polyn

Find out the linear approximation, Find out the linear approximation for a...

Find out the linear approximation for at x =8 .  Utilizes the linear approximation to approximate the value of  and Solution Since it is just the tangent line there

Student, Patio measures 24 meters square. Patio stone are 30 cm each side. ...

Patio measures 24 meters square. Patio stone are 30 cm each side. How many stones are required to cover the patio?

Ratios, in a veggie mix the ratio of cups of carrots to cups of broccolie i...

in a veggie mix the ratio of cups of carrots to cups of broccolie is 4 to 5 if you made this party mix larger how many cups of carrots would be needed to mix with fo cups of brocco

Find out the x-intercepts, Find out the x-intercepts & y-intercepts for eac...

Find out the x-intercepts & y-intercepts for each of the following equations.                            y =x 2 +x - 6 Solution As verification for each of these we wil

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd