Small samples-estimation of population mean , Mathematics

Assignment Help:

Estimation of population mean

If the sample size is small (n<30) the arithmetic mean of small samples are not normally distributed. In such conditions, student's t distribution must be utilized to estimate the population mean.

In this case

Population mean µ = x¯ ±  tS

 x¯ = Sample mean

S =  s/√n

S = standard deviation of samples = 1985_Estimation of population mean.png

for small samples.

n = sample size

v = n - 1 degrees of freedom.

The value of t is acquired from student's t distribution tables for the essential confidence level

Illustration

A random sample of 12 items is taken and is found to have a mean weight of 50 gram and a standard deviation of 9 gram

What is the mean weight of population

a)         Along with 95 percent confidence

b)         Along with 99 percent confidence

Solution

   S = 9; v = n - 1 = 12 - 1 = 11;          

S= s/√n = 9/√12        

µ = x¯ ± t S 

At 95 percent confidence level

µ = 50 ± 2.262

= 50 ± 5.72 grams

Hence we can state with 95 percent confidence that the population mean is among 44.28 and 55.72 gram

At 99 percent confidence level

µ = 50 ± 3.25 (9/√12)

= 50 ± 8.07 gram

 Therefore we can state with 99 percent confidence that the population mean is between 41.93 and 58.07 grams

Note: To employ the t distribution tables it is significant to find the degrees of freedom (v = n - 1). In the illustration above v = 12 - 1 = 11

From the tables we find that at 95 percent confidence level against 11 and under 0.05, the value of t = 2.201

 


Related Discussions:- Small samples-estimation of population mean

Estimation of difference among population proportions , Estimation of diffe...

Estimation of difference among population proportions Assume the two proportions be described by P1 and P2, respectively,Then the difference absolute between the two proportion

Probability., an insurance salesman sells policies to 5 men, all of identic...

an insurance salesman sells policies to 5 men, all of identical age in good health. the probability that a man of this particular age will be alive 30 years hence is 2/3.Find the p

Example of integration strategy - integration techniques, Evaluate the subs...

Evaluate the subsequent integral. ∫ (tan x/sec 4 x / sec 4 x)  dx Solution This kind of integral approximately falls into the form given in 3c.  It is a quotient of ta

Repeated eigenvalues, It is the last case that we require to take a look at...

It is the last case that we require to take a look at. During this section we are going to look at solutions to the system, x?' = A x? Here the eigenvalues are repeated eigen

Find out equation is a function, Example: Find out which of the following ...

Example: Find out which of the following equations functions are & which are not functions.                            y= 5x + 1 Solution The "working" definition of fu

Calculus, I need an explanation of "the integral, from b to a, of the deriv...

I need an explanation of "the integral, from b to a, of the derivative of f (x). and, the integral from a to b. of the derivative of f(t) dt.

Study market, what toold we need to study market

what toold we need to study market

Integers satisfy the inequality, How many integers satisfy the inequality |...

How many integers satisfy the inequality |10(x+1)/x^2+2x+3|=1? Solution) first thing thats not an inequality, and second thing its very easy if thats the question. the LHS = |10/

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd