Small samples-estimation of population mean , Mathematics

Assignment Help:

Estimation of population mean

If the sample size is small (n<30) the arithmetic mean of small samples are not normally distributed. In such conditions, student's t distribution must be utilized to estimate the population mean.

In this case

Population mean µ = x¯ ±  tS

 x¯ = Sample mean

S =  s/√n

S = standard deviation of samples = 1985_Estimation of population mean.png

for small samples.

n = sample size

v = n - 1 degrees of freedom.

The value of t is acquired from student's t distribution tables for the essential confidence level

Illustration

A random sample of 12 items is taken and is found to have a mean weight of 50 gram and a standard deviation of 9 gram

What is the mean weight of population

a)         Along with 95 percent confidence

b)         Along with 99 percent confidence

Solution

   S = 9; v = n - 1 = 12 - 1 = 11;          

S= s/√n = 9/√12        

µ = x¯ ± t S 

At 95 percent confidence level

µ = 50 ± 2.262

= 50 ± 5.72 grams

Hence we can state with 95 percent confidence that the population mean is among 44.28 and 55.72 gram

At 99 percent confidence level

µ = 50 ± 3.25 (9/√12)

= 50 ± 8.07 gram

 Therefore we can state with 99 percent confidence that the population mean is between 41.93 and 58.07 grams

Note: To employ the t distribution tables it is significant to find the degrees of freedom (v = n - 1). In the illustration above v = 12 - 1 = 11

From the tables we find that at 95 percent confidence level against 11 and under 0.05, the value of t = 2.201

 


Related Discussions:- Small samples-estimation of population mean

Adding equally sized groups-prerequisites for multiplication, Adding Equall...

Adding Equally Sized Groups:  Once children have had enough practice of making groups of equal size, you can ask them to add some of these equal groups. They can now begin to atte

Illustrate exponential distribution, Q. Illustrate Exponential Distribution...

Q. Illustrate Exponential Distribution? Ans. These are two examples of events that have an exponential distribution: The length of time you wait at a bus stop for the n

Bernoulli differential equations, In this case we are going to consider dif...

In this case we are going to consider differential equations in the form, y ′ +  p   ( x ) y =  q   ( x ) y n Here p(x) and q(x) are continuous functions in the

Function expansion, The functions {sinmx; cosmx}; m = 0,....∞ form a ...

The functions {sinmx; cosmx}; m = 0,....∞ form a complete set over the interval x ∈ [ -Π, Π]. That is, any function f(x) can be expressed as a linear superposition of these

Define a hamilton path, Define a Hamilton path. Determine if the following ...

Define a Hamilton path. Determine if the following graph has a Hamilton circuit. Ans: A path is known as a Hamiltonian path if it consists of every vertex of the graph e

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd