Small program on Algorithms , Data Structure & Algorithms

Assignment Help:
Objective

The goal of this project is to extend and implement an algorithm presented in the course and to apply notions introduced by the course to this program/algorithm. The assignment is relatively open-ended. The instructor will answer any question you may have. However, when in doubt, work toward the project goal stated above. This is an individual project. You may discuss it with other students, but the work you present must be your own only.

Deliverable

You will produce two items: (1) the code of the program specified below, and (2) a narrative of your work specified below. You will e-mail both items to the TA (whose address will become available in the syllabus early in the course). The items will be transmitted as attachments to your e-mail. The code will be formatted as ASCII text. The narrative will be formatted as either ASCII text or PDF. The deadline follows the rules of the homework, the beginning of the first lecture of the week following the assignment, except that you will e-mail the material rather than bringing a hard copy to class. Late submission will be accepted up to 3 days and will be penalized at 10% a day.

Code spec

Your code will extend and implement the Knapsack Problem as presented in Section 8.2 of the textbook. The extension will become clear while describing the output. Your program is expected to read a file called "input-2.txt" containing 3*k lines, li,j for i in 1,2,... k and j in 1,2,3. An example of input file is input-2.txt. For any i, line li,1 contains n positive integers separated by a comma. They are the weights W1,W2,... of a Knapsack Problem instance with n items, where n is less than 100. Likewise, line li,2 contains n positive integers separated by a comma. They are the values V1,V2,... of the items whose weights are in the previous line. Finally, line li,3 contains a single integer, the knapsack capacity. No other characters beside digits and commas are in each line.

Your program is expected to write a file called "output-2.txt" containing 5*k lines, mi,j for i in 1,2,... k and j in 1,2,...5. The output file corresponding to input-2.txt is output-2.txt. For i in 1,2,... k and j in 1,2,3, mi,j=li,j. Line mi,4 contains a single integer, the Knapsack Problem instance optimal solution. Line mi,5 contains a sequence of positive integers in increasing values. They are the indexes, starting with 1, of the items that make up an optimal solution. The general format of the output is the same as the format of the input. The extension with respect to the textbook algorithm is the generation of a set of items witnessing an optimal solution. If there is more than one set, any set is acceptable.
The weights, values, capacities and other parameters will be within reasonable ranges for a modern laptop or desktop. The programming language can be any of Java, Python, Ruby, C, and C++. Deliver all your code in a single file that can be compiled and executed on cs.pdx.edu. Your program should perform reasonably efficiently both in theory and in practice.

Narrative spec

The narrative is intended to show that you know and understand the aspects of the project related to this course, in particular, ability to: (1) extend and implement an algorithms, (2) relate theoretical complexity to practice, (3) code correct, readable and efficient programs, and (4) communicate your work clearly and concisely.

I would expect to find one or more of the following: (1) a description of the extension in the same style as the algorithm in the textbook, (2) a description of key data structures and algorithms used in the program, (3) the running time analysis of your algorithm/program, and (4) any benchmarking, profiling and/or testing employed for development.

Hints

You are encouraged to start your work early. Reading and writing the files are tasks that you already partially solved in Project 1. The Knapsack Problem is very easy to understand. Initially, you can implement a brute force program without computing the indexes. This will work for small problem instances. Then, you can replace the brute force approach with the dynamic programming approach presented in the textbook. Finally, you can introduce the extension. As the code evolves, you can use the previous version to test the current version''s correctness.

Related Discussions:- Small program on Algorithms

Importance of game theory to decisions, Question: (a) Discuss the impor...

Question: (a) Discuss the importance of game theory to decisions. (b) Explain the following: (i) saddle point, (ii) two-person zero-sum game. (c) Two leading ?rms, ABC Ltd a

A binary tree in which levels except possibly the last, A binary tree in wh...

A binary tree in which if all its levels except possibly the last, have the maximum number of nodes and all the nodes at the last level appear as far left as possible, is called as

Linked list, write an algorithm for multiplication of two sparse matrices u...

write an algorithm for multiplication of two sparse matrices using Linked Lists

Using array to execute the queue structure, Q. Using array to execute the q...

Q. Using array to execute the queue structure, write down an algorithm/program to (i) Insert an element in the queue. (ii) Delete an element from the queue.

Deletion from a red-black tree, Deletion in a RBT uses two main processes, ...

Deletion in a RBT uses two main processes, namely, Procedure 1: This is utilized to delete an element in a given Red-Black Tree. It involves the method of deletion utilized in

Infix expression to postfix form using the stack function, Q. Convert the f...

Q. Convert the following given Infix expression to Postfix form using the stack function: x + y * z + ( p * q + r ) * s , Follow general precedence rule and suppose tha

Recursive and iterative handling of a binary search tree, This section pres...

This section prescribes additional exercise with the recursive and iterative handling of a binary search tree. Adding to the Binary Search Tree Recursively Add implementation

Implementation of stack, In this unit, we have learned how the stacks are i...

In this unit, we have learned how the stacks are implemented using arrays and using liked list. Also, the advantages and disadvantages of using these two schemes were discussed. Fo

Explain dijkstra''s algorithm, Explain Dijkstra's algorithm Dijkstra's ...

Explain Dijkstra's algorithm Dijkstra's algorithm: This problem is concerned with finding the least cost path from an originating node in a weighted graph to a destination node

Implement an open hash table, In a chained hash table, each table entry is ...

In a chained hash table, each table entry is a pointer to a collection of elements. It can be any collection that supports insert, remove, and find, but is commonly a linked list.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd