Sketch the graph through the process of finding the zeroes, Algebra

Assignment Help:

Sketch the graph through the process of finding the zeroes

Example Sketch the graph of

                                 P ( x ) = x4 - x3 - 6x2 .

Solution

Firstly, we'll have to factor this polynomial as much as possible so we can recognize the zeroes & get their multiplicities.

P (x )= x4 - x3 - 6x2  = x2 + x2 - x - 6) = x2 ( x - 3) (x + 2)

Following is a list of the zeroes & their multiplicities.

                x= -2( multiplicity 1)

                x= 0( multiplicity 2)

                x= 3( multiplicity 1)

Thus, the zeroes at x= -2 and x= 3 will correspond to x-intercepts which cross the x-axis as their multiplicity is odd & will do hence at an angle as their multiplicity is NOT at least 2. The zero at x= 0 will not cross the x-axis as its multiplicity is even.

The y-intercept is (0, 0) and notice that it is also an x-intercept.

The coefficient of the 4th degree term is +ve and hence since the degree is even we know that the polynomial will increase without bound at both of the ends of the graph.

At last, following are some function evaluations.

P ( -3) = 54                         P ( -1) =-4         P (1) = -6                P ( 4) = 96

Now, beginning at the left end we know that as we make x more & more -ve the function have to increase without bound.  This means that as we move to the right the graph will in fact be decreasing.

At x = -3 the graph will be decreasing & will continue to decrease while we hit the first x- intercept at x= -2 as we know that this x-intercept will cross the x-axis.

Next, as the next x-intercept is at x=0 we will ought to have a turning point somewhere so that the graph can increase back up to this x-intercept. Again, we won't worry regarding where this turning point in fact is.

Once we hit the x-intercept at x= 0 we know that we've got to have a turning point as this x- intercept doesn't cross the x-axis.  Therefore to the right of x=0 the graph will now be decreasing.

It will continue to decrease till it hits another turning point (at some unknown point) so that the graph can get back up to x-axis for the next x-intercept at x= 3. It is the final x-intercept and as the graph is increasing at this point and have to increase without any bound at this end we are done.

Following is a sketch of the graph.

167_Sketch the graph through the process of finding the zeroes.png

  The procedure that we've utilized in these examples can be a hard process to learn. It takes time to learn how to properly interpret the results.

Also, as pointed out at several spots there are various situations that we won't be capable to deal with here. To determine the majority of the turning points we would require some Calculus, which we obviously don't have.  Also, the procedure does needs that we have all the zeroes and that they all real numbers.

Even with these drawbacks though, the procedure can at least give us an idea of what the graph of polynomial will look like.


Related Discussions:- Sketch the graph through the process of finding the zeroes

Completing the square process, As a last topic in this section we have to b...

As a last topic in this section we have to briefly talk about how to take a parabola in the general form & convert it into the following form

Equivalent values, two debts- the first of 800 is due six month ago and the...

two debts- the first of 800 is due six month ago and the second of 1400 borrowed one year ago for a term of three years at 6.5% compunded annulallu are to be replaced by a single p

Exponential and radical functions, Graph each data set. Which kind of mode...

Graph each data set. Which kind of model best describes the data? {(0,3), (1,9), (2,11) (3,9), (4,3)}

Algebra 2, Find the zeros of the function by using the quadratic formula. ...

Find the zeros of the function by using the quadratic formula. Simplify your answer as much as possible. g(x)= 2x^2+4x-12

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd