Sketch several trajectories for the system, Mathematics

Assignment Help:

Sketch several trajectories for the system,

x1' = x1 + 2x2                                                                               

x2' = 3x1 + 2x2

694_Sketch several trajectories for the system.png

Solution

Therefore, what we require to do is pick several points in the phase plane, plug them in the right side of the system. We'll perform it for a couple of points.

39_Sketch several trajectories for the system1.png

Therefore, what does it tell us? Fine at the point (-1, 1) under the phase plane there will be a vector pointing toward <1,-1>. At the point (2,0) here will be a vector pointing toward <2, 6>. At the point (-3,-2) here will be a vector pointing toward <-7, -13>. Doing this for a huge number of points under the phase plane will provide the subsequent sketch of vectors.

358_Sketch several trajectories for the system2.png

Here all we require to do is sketch in some trajectories. To perform this all we require to do is keep in mind that the vectors in the sketch above are tangent to the trajectories. As well as the directions of the vectors provide the direction of the trajectory as t raises thus we can demonstrate the time dependence of the solution with adding in arrows to the trajectories.

Doing this provides the following sketch.

75_Sketch several trajectories for the system3.png

This sketch is termed as the phase portrait. Generally phase portraits only comprise the trajectories of the solutions and not any vectors. Each of our phase portraits by this point on will only contain the trajectories.

Under this case this looks like most of the solutions will begin away from the equilibrium solution after that as t begins to increase they move in the directions of the equilibrium solution and then finally start moving away from the equilibrium solution again.

There appear to be four solutions which have slightly different behaviors. This looks like two of the solutions will begin at or near at least the equilibrium solution and them move straight away from.

It whiles two other solution starts away from the equilibrium solution and after that move straight in directions of the equilibrium solution.

In these types of cases we describe as the equilibrium point a saddle point and we term as the equilibrium point under this case unstable as all but two of the solutions are moving away from this as t increases.

Since we noted previous this is not usually the way which we will sketch trajectories. All we really require to find the trajectories are the eigen-values and eigen-vectors of the matrix A. We will notice how to do this over the subsequent couple of sections as we resolve the systems.

Now there are some more phase portraits so you can notice some more possible illustrations. We'll in fact be generating several of these during the course of the subsequent couple of sections.

1534_Sketch several trajectories for the system4.png

1806_Sketch several trajectories for the system5.png

Not all probable phase portraits have been demonstrated here. These are now to demonstrate you a few of the possibilities. Ensure to notice that several types can be either asymptotically unstable or stable depending upon the direction of the arrows.

Remember the difference in among stable and asymptotically stable. For an asymptotically stable node or spiral all the trajectories will shifts in the directions of the equilibrium point as t increases, while a center that is always stable trajectory will just move around the equilibrium point although never really move in towards this.


Related Discussions:- Sketch several trajectories for the system

Smith keeps track of poor work, Smith keeps track of poor work. Often on af...

Smith keeps track of poor work. Often on afternoon it is 5%. If he checks 300 of 7500 instruments what is probability he will find less than 20 substandard?

Ratios....., if the ratio of boys to girls ism 3 to 5, then what percent of...

if the ratio of boys to girls ism 3 to 5, then what percent of the students are boys

What is the greatest common factor of 24 and 64, What is the greatest commo...

What is the greatest common factor of 24 and 64? List the factors of 24 and 64. The largest factor that they have in common is the greatest common factor. Factors of 24: 1,

4 accounting majors, 4 accounting majors, 2 economics majors and 3 marketin...

4 accounting majors, 2 economics majors and 3 marketing majors have an interview for5 different positions with a large company. Find the number of dfferent ways that 5 of these c

Solve the form x2 + bx - c, Solve the form x 2 + bx - c ? This tutori...

Solve the form x 2 + bx - c ? This tutorial will help you factor quadratics that look something like this: x 2 + 11x - 12 (No lead coefficient; positive middle coeffic

Graph and algebraic methods , To answer each question, use the function t(r...

To answer each question, use the function t(r) = d , where t is the time in hours, d is the distance in miles, and r is the rate in miles per hour. a. Sydney drives 10 mi at a c

How much money did carlie have after she had paid her friend, Carlie receiv...

Carlie received x dollars every hour she spent babysitting. She babysat a total of h hours. She then gave half of the money to a friend who had stopped through to help her. How muc

Geometric mean-geometric progression, Geometric mean - It is a measure ...

Geometric mean - It is a measure of central tendency normally utilized to measure industrial increases rates. - It is explained as the nth root of the product of 'n' observa

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd