Sketch an algorithm to recognize the language, Theory of Computation

Assignment Help:

First model: Computer has a ?xed number of bits of storage. You will model this by limiting your program to a single ?xed-precision unsigned integer variable, e.g., a single one-byte variable (which, of course, can store only values in the range [0, . . . , 255]), etc. Limityourself, further, to calling input() in just one place in your program. One way of doing this is to call input() in the argument of a multiway branch (e.g., switch) statement. (That statement, of course, will need to be in the scope of some sort of loop, otherwise you would never read more than the ?rst symbol of the input.) The reason for this restriction will become clear in the last part of this question.

(a) Sketch an algorithm to recognize the language: {(ab)i | i ≥ 0} (that is, the set of strings of ‘a's and ‘b's consisting of zero or more repetitions of ab: {ε, ab, abab, ababab, . . .}, where ‘ε' is the empty string, containing no symbols whatsoever).

(b) How many bits do you need for this (how much precision do you need)? Can you do it with a single bit integer?

(c) Sketch an algorithm to recognize the language: {(abbba)i | i ≥ 0} (i.e., {ε, abbba, abbbaabbba, . . .}).

(d) How many bits do you need for this?

(e) Suppose we relax the limitation to calling input() at a single place in the code. Sketch an algorithm for recognizing the language of part (a) using (apparently) no data storage.

[Hint: All you need to do is to verify that the ‘a's and ‘b's occur in the right sequence. If you forget all the restrictions, etc., and just use the simplest program you can think of, you are likely to come up with one that meets these criteria.]

Argue that any algorithm for recognizing this language must store at least one bit of information. Where does your program store it?


Related Discussions:- Sketch an algorithm to recognize the language

Myhill-nerode theorem, The Myhill-Nerode Theorem provided us with an algori...

The Myhill-Nerode Theorem provided us with an algorithm for minimizing DFAs. Moreover, the DFA the algorithm produces is unique up to isomorphism: every minimal DFA that recognizes

Non - sl languages, The key thing about the Suffx Substitution Closure prop...

The key thing about the Suffx Substitution Closure property is that it does not make any explicit reference to the automaton that recognizes the language. While the argument tha

Local myhill graphs, Myhill graphs also generalize to the SLk case. The k-f...

Myhill graphs also generalize to the SLk case. The k-factors, however, cannot simply denote edges. Rather the string σ 1 σ 2 ....... σ k-1 σ k asserts, in essence, that if we hav

Turing machine, prove following function is turing computable? f(m)={m-2,if...

prove following function is turing computable? f(m)={m-2,if m>2, {1,if

Strictly local generation automaton, Another way of interpreting a strictly...

Another way of interpreting a strictly local automaton is as a generator: a mechanism for building strings which is restricted to building all and only the automaton as an inexh

Strictly k-local automata, Strictly 2-local automata are based on lookup ta...

Strictly 2-local automata are based on lookup tables that are sets of 2-factors, the pairs of adjacent symbols which are permitted to occur in a word. To generalize, we extend the

Pojects idea, i want to do projects for theory of computation subject what ...

i want to do projects for theory of computation subject what topics should be best.

Theory of computation, Computations are deliberate for processing informati...

Computations are deliberate for processing information. Computability theory was discovered in the 1930s, and extended in the 1950s and 1960s. Its basic ideas have become part of

Local and recognizable languages, We developed the idea of FSA by generaliz...

We developed the idea of FSA by generalizing LTk transition graphs. Not surprisingly, then, every LTk transition graph is also the transition graph of a FSA (in fact a DFA)-the one

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd