Sketch an algorithm to recognize the language, Theory of Computation

Assignment Help:

First model: Computer has a ?xed number of bits of storage. You will model this by limiting your program to a single ?xed-precision unsigned integer variable, e.g., a single one-byte variable (which, of course, can store only values in the range [0, . . . , 255]), etc. Limityourself, further, to calling input() in just one place in your program. One way of doing this is to call input() in the argument of a multiway branch (e.g., switch) statement. (That statement, of course, will need to be in the scope of some sort of loop, otherwise you would never read more than the ?rst symbol of the input.) The reason for this restriction will become clear in the last part of this question.

(a) Sketch an algorithm to recognize the language: {(ab)i | i ≥ 0} (that is, the set of strings of ‘a's and ‘b's consisting of zero or more repetitions of ab: {ε, ab, abab, ababab, . . .}, where ‘ε' is the empty string, containing no symbols whatsoever).

(b) How many bits do you need for this (how much precision do you need)? Can you do it with a single bit integer?

(c) Sketch an algorithm to recognize the language: {(abbba)i | i ≥ 0} (i.e., {ε, abbba, abbbaabbba, . . .}).

(d) How many bits do you need for this?

(e) Suppose we relax the limitation to calling input() at a single place in the code. Sketch an algorithm for recognizing the language of part (a) using (apparently) no data storage.

[Hint: All you need to do is to verify that the ‘a's and ‘b's occur in the right sequence. If you forget all the restrictions, etc., and just use the simplest program you can think of, you are likely to come up with one that meets these criteria.]

Argue that any algorithm for recognizing this language must store at least one bit of information. Where does your program store it?


Related Discussions:- Sketch an algorithm to recognize the language

Closure properties of recognizable languages, We got the class LT by taking...

We got the class LT by taking the class SL and closing it under Boolean operations. We have observed that LT ⊆ Recog, so certainly any Boolean combination of LT languages will also

Finiteness of languages is decidable, To see this, note that if there are a...

To see this, note that if there are any cycles in the Myhill graph of A then L(A) will be infinite, since any such cycle can be repeated arbitrarily many times. Conversely, if the

Gdtr, What is the purpose of GDTR?

What is the purpose of GDTR?

Notes, write short notes on decidable and solvable problem

write short notes on decidable and solvable problem

Non deterministic finite state automaton, Automaton (NFA) (with ε-transitio...

Automaton (NFA) (with ε-transitions) is a 5-tuple: (Q,Σ, δ, q 0 , F i where Q, Σ, q 0 and F are as in a DFA and T ⊆ Q × Q × (Σ ∪ {ε}). We must also modify the de?nitions of th

Operations on strictly local languages, The class of Strictly Local Languag...

The class of Strictly Local Languages (in general) is closed under • intersection but is not closed under • union • complement • concatenation • Kleene- and positive

First model of computation, Computer has a single unbounded precision count...

Computer has a single unbounded precision counter which you can only increment, decrement and test for zero. (You may assume that it is initially zero or you may include an explici

Applying the pumping lemma, Applying the pumping lemma is not fundamentally...

Applying the pumping lemma is not fundamentally di?erent than applying (general) su?x substitution closure or the non-counting property. The pumping lemma is a little more complica

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd