Sketch an algorithm to recognize the language, Theory of Computation

Assignment Help:

First model: Computer has a ?xed number of bits of storage. You will model this by limiting your program to a single ?xed-precision unsigned integer variable, e.g., a single one-byte variable (which, of course, can store only values in the range [0, . . . , 255]), etc. Limityourself, further, to calling input() in just one place in your program. One way of doing this is to call input() in the argument of a multiway branch (e.g., switch) statement. (That statement, of course, will need to be in the scope of some sort of loop, otherwise you would never read more than the ?rst symbol of the input.) The reason for this restriction will become clear in the last part of this question.

(a) Sketch an algorithm to recognize the language: {(ab)i | i ≥ 0} (that is, the set of strings of ‘a's and ‘b's consisting of zero or more repetitions of ab: {ε, ab, abab, ababab, . . .}, where ‘ε' is the empty string, containing no symbols whatsoever).

(b) How many bits do you need for this (how much precision do you need)? Can you do it with a single bit integer?

(c) Sketch an algorithm to recognize the language: {(abbba)i | i ≥ 0} (i.e., {ε, abbba, abbbaabbba, . . .}).

(d) How many bits do you need for this?

(e) Suppose we relax the limitation to calling input() at a single place in the code. Sketch an algorithm for recognizing the language of part (a) using (apparently) no data storage.

[Hint: All you need to do is to verify that the ‘a's and ‘b's occur in the right sequence. If you forget all the restrictions, etc., and just use the simplest program you can think of, you are likely to come up with one that meets these criteria.]

Argue that any algorithm for recognizing this language must store at least one bit of information. Where does your program store it?


Related Discussions:- Sketch an algorithm to recognize the language

Class of recognizable languages, Proof (sketch): Suppose L 1 and L 2 are ...

Proof (sketch): Suppose L 1 and L 2 are recognizable. Then there are DFAs A 1 = (Q,Σ, T 1 , q 0 , F 1 ) and A 2 = (P,Σ, T 2 , p 0 , F 2 ) such that L 1 = L(A 1 ) and L 2 = L(

Strictly 2 - local automata, We will assume that the string has been augmen...

We will assume that the string has been augmented by marking the beginning and the end with the symbols ‘?' and ‘?' respectively and that these symbols do not occur in the input al

Transition graph for the automaton, Lemma 1 A string w ∈ Σ* is accepted by ...

Lemma 1 A string w ∈ Σ* is accepted by an LTk automaton iff w is the concatenation of the symbols labeling the edges of a path through the LTk transition graph of A from h?, ∅i to

Trees and graphs , Trees and Graphs Overview: The problems for this ...

Trees and Graphs Overview: The problems for this assignment should be written up in a Mircosoft Word document. A scanned hand written file for the diagrams is also fine. Be

Binary form and chomsky normal form, Normal forms are important because the...

Normal forms are important because they give us a 'standard' way of rewriting and allow us to compare two apparently different grammars G1  and G2. The two grammars can be shown to

Flow charts, https://www.google.com/search?q=The+fomula+n%3D%28x%3D0%29%2F%...

https://www.google.com/search?q=The+fomula+n%3D%28x%3D0%29%2F%281%3D2%29.The+value+x%3D0+and+is+used+to+stop+the+algerithin.The+calculation+is+reapeated+using+values+of+x%3D0+is+in

Mapping reducibility, Can you say that B is decidable? If you somehow know...

Can you say that B is decidable? If you somehow know that A is decidable, what can you say about B?

Finiteness of languages is decidable, To see this, note that if there are a...

To see this, note that if there are any cycles in the Myhill graph of A then L(A) will be infinite, since any such cycle can be repeated arbitrarily many times. Conversely, if the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd