Simulation of a pn junction, Electrical Engineering

Assignment Help:

Simulation of a pn Junction

An n+ p junction is fabricated on a p-type silicon substrate with NA = 8×1015 cm-3 . The n+ region has a concentration of ND = 1.5×1018 cm-3 and a junction depth of xj = 1.4 μm. The total device depth is 10 μm (from top to bottom contact).

Use Sentaurus to simulate and view the results for the following conditions:

1. Zero Bias, Uniform Doping Profiles Using uniform doping profiles, verifies the 1D and 2D doping concentration of this junction. Also plot the 1D potential across the junction to estimate the built-in potential and depletion region width. Compare the results with the theoretical values.

You may want to use a non-uniform mesh, which is denser in the top 2 μm of the device.

2. Reverse Bias, Uniform Doping Profiles Simulate the diode under reverse bias. Plot the reverse IV characteristics and extract the breakdown voltage. Compare your result with Figure in the text. What is the maximum electric field in the junction just before breakdown?

2305_Simulation of a pn Junction.png

3. Forward Bias, Uniform Doping Profiles Plot the IV relation for this diode under a forward bias between 0 and 1 V. What allows us to raise the forward bias above 0.7 V? How can this be seen from the simulation output?

Hint: Examine the change in the IV curve with increasing voltage and determine the cause of this change.

4. High Temperature, Uniform Doping Profiles The junction temperature is raised to 580°C. Simulate this junction up to a reverse bias of 12V and a forward bias of 1V. Plot and explain the IV characteristics.

5. Reverse Bias, Gaussian n+ Doping Profiles Using a Gaussian profile for the n+ region with peak concentration of 1.5×1018 cm-3 and junction depth of xj = 0.7 μm, verify the 1D and 2D doping concentration of the junction. Plot the 1D potential across the junction to estimate the built-in voltage and depletion width at equilibrium. Compare Vbi with the theoretical value and compare Vbi and junction width to those from part 2. Also, estimate the minority carrier diffusion lengths Ln and Lp.


Related Discussions:- Simulation of a pn junction

Describe the processor technology used for embedded system, a. Write the ad...

a. Write the advantages of choosing a single purpose processor over a general purpose processor. b. List out the hardware units that must be there in the embedded systems. c.

Give the applications of carbon, Give the applications of carbon. Car...

Give the applications of carbon. Carbon : These materials used in the field of electrical engineering are manufactured from graphite and the other forms carbon as coal and so

Central energy conservation fund, Central Energy Conservation Fund Thi...

Central Energy Conservation Fund This fund is to be set up at the Centre to develop the delivery mechanism for large-scale adoption of energy efficiency services like as perfo

Wave anlysers, Operation of heterodyne wave analyzer with block diagram

Operation of heterodyne wave analyzer with block diagram

Calculate the membrane areas, In a 3-stage continuous ultrafiltration proce...

In a 3-stage continuous ultrafiltration process, a solution is concentrated from 5 gm/Liter to 50 gm/Liter of protein. The final retentate is to have a flow rate of 1000 L/hr. The

Adi add immediate instruction , ADI Add Immediate  Instruction The  b...

ADI Add Immediate  Instruction The  bit  data specified in the instruction  is  directly  added with  contents of accumulator and result  of operation is stored  in the  accum

Nand gate - introduction to microprocessors , NAND Gate NAND   means NO...

NAND Gate NAND   means NOT AND  it complements  the output  of an AND  gate. The symbol  of NAND  by a NOT  gate.  Generally Not  operation  is represented by a bubble as shown

Find the force between the wires, Q. A magnetic force exists between two ad...

Q. A magnetic force exists between two adjacent, parallel current-carryingwires. Let I 1 and I 2 be the currents carried by the wires, and r the separation between them. Making u

Rc coupled amplifier over a single stage, Q. What is the advantage of a two...

Q. What is the advantage of a two-stage overloaded RC coupled amplifier over a single stage one? What are it's uses? It is a frequently encountered configuration. Here, the tra

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd