Simulation of a pn junction, Electrical Engineering

Assignment Help:

Simulation of a pn Junction

An n+ p junction is fabricated on a p-type silicon substrate with NA = 8×1015 cm-3 . The n+ region has a concentration of ND = 1.5×1018 cm-3 and a junction depth of xj = 1.4 μm. The total device depth is 10 μm (from top to bottom contact).

Use Sentaurus to simulate and view the results for the following conditions:

1. Zero Bias, Uniform Doping Profiles Using uniform doping profiles, verifies the 1D and 2D doping concentration of this junction. Also plot the 1D potential across the junction to estimate the built-in potential and depletion region width. Compare the results with the theoretical values.

You may want to use a non-uniform mesh, which is denser in the top 2 μm of the device.

2. Reverse Bias, Uniform Doping Profiles Simulate the diode under reverse bias. Plot the reverse IV characteristics and extract the breakdown voltage. Compare your result with Figure in the text. What is the maximum electric field in the junction just before breakdown?

2305_Simulation of a pn Junction.png

3. Forward Bias, Uniform Doping Profiles Plot the IV relation for this diode under a forward bias between 0 and 1 V. What allows us to raise the forward bias above 0.7 V? How can this be seen from the simulation output?

Hint: Examine the change in the IV curve with increasing voltage and determine the cause of this change.

4. High Temperature, Uniform Doping Profiles The junction temperature is raised to 580°C. Simulate this junction up to a reverse bias of 12V and a forward bias of 1V. Plot and explain the IV characteristics.

5. Reverse Bias, Gaussian n+ Doping Profiles Using a Gaussian profile for the n+ region with peak concentration of 1.5×1018 cm-3 and junction depth of xj = 0.7 μm, verify the 1D and 2D doping concentration of the junction. Plot the 1D potential across the junction to estimate the built-in voltage and depletion width at equilibrium. Compare Vbi with the theoretical value and compare Vbi and junction width to those from part 2. Also, estimate the minority carrier diffusion lengths Ln and Lp.


Related Discussions:- Simulation of a pn junction

#title.energy harvesting from door movement., How to convert mechanical ene...

How to convert mechanical energy into electrical energy

Show jkff connected as a t flip-flop, Q. For a JKFFwith JK = 11, the output...

Q. For a JKFFwith JK = 11, the output changes on every clock pulse. The change will be coincident with the clock pulse trailing edge and the flip-flop is said to toggle, when T = 1

In given block diagram find geq, Q. Show that the block diagram of Figure c...

Q. Show that the block diagram of Figure can be reduced to the form of Figure. Find G eq (s) and H eq (s).

Uses of zener diode, Uses of Zener Diode Zener diodes are extensively...

Uses of Zener Diode Zener diodes are extensively used as voltage references and like shunt regulators to regulate the voltage across small circuits. While connected in parall

Explain temperature dependency in conductors, Explain temperature dependenc...

Explain temperature dependence of electrical conductivity and resistivity in conductors. When the temperature is increased, there is a greater thermal motion in atoms that redu

Electricity and gas hazards, INTRODUCTION : Electricity is one of the fine...

INTRODUCTION : Electricity is one of the finest gifts of science to the mankind since just a flick of switch can flood the room with light or put on a fan, an air conditioner or a

Signals, Using the audiorecorder() function in MATLAB, make a recording of ...

Using the audiorecorder() function in MATLAB, make a recording of your voice. Use a sample rate of 8kHz, 16 bits per sample, and aim to record around 2 seconds worth. Quantize th

Determine the signal bandwidth and the amplitudes, Determine the signal ban...

Determine the signal bandwidth and the amplitudes, Computer Networking

Network theorems, what is the limitations of maximum power transfer thorem ...

what is the limitations of maximum power transfer thorem ?

Explain output ce characteristics, Q. Explain output CE characteristics? ...

Q. Explain output CE characteristics? 1. In the active region ic increases slowly as Vce increases. The slope of the curved is greater than the CB output characteristics. In co

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd