Simpson rule - approximating definite integrals, Mathematics

Assignment Help:

Simpson's Rule - Approximating Definite Integrals

This is the last method we're going to take a look at and in this case we will once again divide up the interval [a, b] into n subintervals.  Though, unlike the preceding two methods we want to require that n be even. The cause for this will be obvious in a bit. The width of every subinterval is,

Δx = b - a / n

In the Trapezoid Rule (explain earlier) we approximated the curve along with a straight line.  For this Rule (Simpson's Rule) we are going to approximate the function along with a quadratic and we're going to need that the quadratic agree with three of the points from our subintervals.  Below is a drawing of this using n = 6.  Every approximation is colored in a different way thus we can see how they actually work.

108_Simpson Rule - Approximating Definite Integrals.png

Note: In fact each approximation covers two of the subintervals. This is the cause for requiring n to be even.  A few approximations look much more like a line after that a quadratic, but they really are quadratics. As well note that some of the approximations do a better job as compared to others. It can be illustrated that the area under the approximation on the intervals [xi -1, xi] and [xi , xi+1] Δ is like this:

Ai = Δx / 3 (f(xi-1)+4f(xi) + f (xi+1))

If we make use of n subintervals the integral is then approximately,

 ∫ba  f (x) dx ≈  Δx / 3 (f(x0) + 4f (x1) + f (x2) + Δx / 3  (f (x2) + 4f (x3) + f (x4)) + ....+ Δx / 3 (f (xn-2) + 4f (xn-1) + f (xn))  

On simplifying we reach at the general Simpson's Rule.

 ∫ab   f (x) dx ≈ Δx / 3 [(f(x0) + 4f (x1) + 2f (x2) .... + 2f (xn-2) + 4f (xn-1) + f(xn)]

In the above case notice that all the function evaluations at points along with odd subscripts are multiplied by 4 and every function evaluations at points with even subscripts (apart from for the first and last) are multiplied by 2.  If you can keep in mind this, this is a quite easy rule to remember.


Related Discussions:- Simpson rule - approximating definite integrals

Correlation, How o make vicariate frequency distribution table

How o make vicariate frequency distribution table

Example of vector, Provide the vector for each of the following. (a) The...

Provide the vector for each of the following. (a) The vector from (2, -7, 0) -  (1, - 3, - 5 ) (b) The vector from (1,-3,-5) - (2, - 7, 0) (c) The position vector for ( -

What was brian''s total commission on these three sales, Brian is a real es...

Brian is a real estate agent. He forms a 2.5% commission on each sale. During the month of June he sold three houses. The houses sold for $153,000, $299,000, and $121,000. What was

What could the dimensions of the floor be in terms of x, Harold is tiling a...

Harold is tiling a rectangular kitchen floor with an area that is expressed as x 2 + 6x + 5. What could the dimensions of the floor be in terms of x? Because area of a rectang

Least cost method in operations research, algorithm and numerical examples ...

algorithm and numerical examples of least cost method

Equation: 4x^4+9x^4=64 , If 4x^4+9x^4=64 then the maximum value of x^2+y^2 ...

If 4x^4+9x^4=64 then the maximum value of x^2+y^2 is solution) From the eq. finding the value of x^2 and putting it in x^2 + y^2.we get 2nd eq. differentiating that and putting

Example of mathematical operations, Example of mathematical operations: ...

Example of mathematical operations: Example: Solve the following equation: [2 .( 3 + 5) - 5 + 2] x 3 =  ________   Solution: a.         Perform operations with

Determine matrix of transformation for orthogonal projection, Determine the...

Determine the matrix of transformation for the orthogonal projection onto the line L that passes through the origin and is in the direction Û=(3/13 , 4/13 , 12/13). Determine the r

DIFFERENTIAL EQUATION, Find an integrating factor for the linear differenti...

Find an integrating factor for the linear differential equation and hence Önd its general solution: SOLVE T^ 2 DY DX+T2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd