Simpson rule - approximating definite integrals, Mathematics

Assignment Help:

Simpson's Rule - Approximating Definite Integrals

This is the last method we're going to take a look at and in this case we will once again divide up the interval [a, b] into n subintervals.  Though, unlike the preceding two methods we want to require that n be even. The cause for this will be obvious in a bit. The width of every subinterval is,

Δx = b - a / n

In the Trapezoid Rule (explain earlier) we approximated the curve along with a straight line.  For this Rule (Simpson's Rule) we are going to approximate the function along with a quadratic and we're going to need that the quadratic agree with three of the points from our subintervals.  Below is a drawing of this using n = 6.  Every approximation is colored in a different way thus we can see how they actually work.

108_Simpson Rule - Approximating Definite Integrals.png

Note: In fact each approximation covers two of the subintervals. This is the cause for requiring n to be even.  A few approximations look much more like a line after that a quadratic, but they really are quadratics. As well note that some of the approximations do a better job as compared to others. It can be illustrated that the area under the approximation on the intervals [xi -1, xi] and [xi , xi+1] Δ is like this:

Ai = Δx / 3 (f(xi-1)+4f(xi) + f (xi+1))

If we make use of n subintervals the integral is then approximately,

 ∫ba  f (x) dx ≈  Δx / 3 (f(x0) + 4f (x1) + f (x2) + Δx / 3  (f (x2) + 4f (x3) + f (x4)) + ....+ Δx / 3 (f (xn-2) + 4f (xn-1) + f (xn))  

On simplifying we reach at the general Simpson's Rule.

 ∫ab   f (x) dx ≈ Δx / 3 [(f(x0) + 4f (x1) + 2f (x2) .... + 2f (xn-2) + 4f (xn-1) + f(xn)]

In the above case notice that all the function evaluations at points along with odd subscripts are multiplied by 4 and every function evaluations at points with even subscripts (apart from for the first and last) are multiplied by 2.  If you can keep in mind this, this is a quite easy rule to remember.


Related Discussions:- Simpson rule - approximating definite integrals

Development is continuously going on-- learning mathematics, DEVELOPMENT IS...

DEVELOPMENT IS CONTINUOUSLY GOING ON :  Think of any two children around you. Would you say that they are alike? Do they learn the same things the same way? It is very unlikely be

Example of partial fraction decomposition, Example of Partial Fraction Deco...

Example of Partial Fraction Decomposition Evaluate the following integral. ∫ (3x+11 / x 2 -x-6) (dx) Solution: The 1 st step is to factor the denominator so far as

Calculate the area of the skirt to the nearest foot, Pat is making a Christ...

Pat is making a Christmas tree skirt. She needs to know how much fabric to buy. Using the example provided, calculate the area of the skirt to the nearest foot. a. 37.7 ft 2

speed of the truck , A man travels 600km partly by train and partly by tru...

A man travels 600km partly by train and partly by truck. If he  covers 120km by train and the rest by truck, it takes him eight hours. But, if he travels 200km by train and the res

Estimate the rms value and prominent features, Figure shows the auto-spect...

Figure shows the auto-spectral density for a signal from an accelerometer which was attached to the front body of a car directly above its front suspension while it was driven at 6

How would the society be strengthened, All things considered, in a sense of...

All things considered, in a sense of ethnicity (a sense of identification with and loyalty to one's group) good or bad? is it harmful or helpful? What would be lost if Americans lo

The mode -measures of central tendency, The mode - It is one of the me...

The mode - It is one of the measures of central tendency. The mode is defined as a value in a frequency distribution that has the highest frequency. Occasionally a single valu

Classifying critical points, Classifying critical points : Let's classify ...

Classifying critical points : Let's classify critical points as relative maximums, relative minimums or neither minimums or maximums. Fermat's Theorem told us that all relative

Simplifying rational expressions, I need to simple this rational expression...

I need to simple this rational expression, but I can''t figure out how. (x+1)/(x^2-2x-35)+(x^2+x-12)/(x^2-2x-24)(x^2-4x-12)/(x^2+2x-15)

Graphing sets of numbers, Q. Graphing Sets of Numbers? Ans. To  gr...

Q. Graphing Sets of Numbers? Ans. To  graph  a set of numbers on a number line means to plot, or locate, those positions on the line. The number that corresponds to a poin

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd