Simpson rule - approximating definite integrals, Mathematics

Assignment Help:

Simpson's Rule - Approximating Definite Integrals

This is the last method we're going to take a look at and in this case we will once again divide up the interval [a, b] into n subintervals.  Though, unlike the preceding two methods we want to require that n be even. The cause for this will be obvious in a bit. The width of every subinterval is,

Δx = b - a / n

In the Trapezoid Rule (explain earlier) we approximated the curve along with a straight line.  For this Rule (Simpson's Rule) we are going to approximate the function along with a quadratic and we're going to need that the quadratic agree with three of the points from our subintervals.  Below is a drawing of this using n = 6.  Every approximation is colored in a different way thus we can see how they actually work.

108_Simpson Rule - Approximating Definite Integrals.png

Note: In fact each approximation covers two of the subintervals. This is the cause for requiring n to be even.  A few approximations look much more like a line after that a quadratic, but they really are quadratics. As well note that some of the approximations do a better job as compared to others. It can be illustrated that the area under the approximation on the intervals [xi -1, xi] and [xi , xi+1] Δ is like this:

Ai = Δx / 3 (f(xi-1)+4f(xi) + f (xi+1))

If we make use of n subintervals the integral is then approximately,

 ∫ba  f (x) dx ≈  Δx / 3 (f(x0) + 4f (x1) + f (x2) + Δx / 3  (f (x2) + 4f (x3) + f (x4)) + ....+ Δx / 3 (f (xn-2) + 4f (xn-1) + f (xn))  

On simplifying we reach at the general Simpson's Rule.

 ∫ab   f (x) dx ≈ Δx / 3 [(f(x0) + 4f (x1) + 2f (x2) .... + 2f (xn-2) + 4f (xn-1) + f(xn)]

In the above case notice that all the function evaluations at points along with odd subscripts are multiplied by 4 and every function evaluations at points with even subscripts (apart from for the first and last) are multiplied by 2.  If you can keep in mind this, this is a quite easy rule to remember.


Related Discussions:- Simpson rule - approximating definite integrals

Develop a linear program, The production manager of Koulder Refrigerators m...

The production manager of Koulder Refrigerators must decide how many refrigerators to produce in each of the next four months to meet demand at the lowest overall cost. There is a

Percentage, how do you you find 40% if you 35 out of 40

how do you you find 40% if you 35 out of 40

Find how much more space than the toy it will cover, A Solid toy in the for...

A Solid toy in the form of a hemisphere surmounted by the right circular cone of height  2cm  and  diameter  of  the  base  4  cm .If  a right  circular  cylinder circumscribes the

Probability, An unbiased die is tossed twice .Find the probability of getti...

An unbiased die is tossed twice .Find the probability of getting a 4,5,6 on the first toss and a 1,2,3,4 on the second toss

Fractions, what is the lowest term of 11/121

what is the lowest term of 11/121

Intergration, Functional and variations.Block III, Consider the functiona...

Functional and variations.Block III, Consider the functional S[y]=?_1^2 v(x^2+y'')dx , y(1)=0,y(2)=B Show that if ?=S[y+eg]-S[y], then to second order in e, ?=1/2 e?_1^2¦?g^'

Bricklayer estimates 6.5 how many bricks will he required, A bricklayer est...

A bricklayer estimates that he requires 6.5 bricks per square foot. He needs to lay a patio that will be 110 square feet. How many bricks will he required? Multiply 6.5 by 110;

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd