Simpson rule - approximating definite integrals, Mathematics

Assignment Help:

Simpson's Rule - Approximating Definite Integrals

This is the last method we're going to take a look at and in this case we will once again divide up the interval [a, b] into n subintervals.  Though, unlike the preceding two methods we want to require that n be even. The cause for this will be obvious in a bit. The width of every subinterval is,

Δx = b - a / n

In the Trapezoid Rule (explain earlier) we approximated the curve along with a straight line.  For this Rule (Simpson's Rule) we are going to approximate the function along with a quadratic and we're going to need that the quadratic agree with three of the points from our subintervals.  Below is a drawing of this using n = 6.  Every approximation is colored in a different way thus we can see how they actually work.

108_Simpson Rule - Approximating Definite Integrals.png

Note: In fact each approximation covers two of the subintervals. This is the cause for requiring n to be even.  A few approximations look much more like a line after that a quadratic, but they really are quadratics. As well note that some of the approximations do a better job as compared to others. It can be illustrated that the area under the approximation on the intervals [xi -1, xi] and [xi , xi+1] Δ is like this:

Ai = Δx / 3 (f(xi-1)+4f(xi) + f (xi+1))

If we make use of n subintervals the integral is then approximately,

 ∫ba  f (x) dx ≈  Δx / 3 (f(x0) + 4f (x1) + f (x2) + Δx / 3  (f (x2) + 4f (x3) + f (x4)) + ....+ Δx / 3 (f (xn-2) + 4f (xn-1) + f (xn))  

On simplifying we reach at the general Simpson's Rule.

 ∫ab   f (x) dx ≈ Δx / 3 [(f(x0) + 4f (x1) + 2f (x2) .... + 2f (xn-2) + 4f (xn-1) + f(xn)]

In the above case notice that all the function evaluations at points along with odd subscripts are multiplied by 4 and every function evaluations at points with even subscripts (apart from for the first and last) are multiplied by 2.  If you can keep in mind this, this is a quite easy rule to remember.


Related Discussions:- Simpson rule - approximating definite integrals

Give the introduction to scientific notation, Give the Introduction to Scie...

Give the Introduction to Scientific Notation? In mathematics, it can be very difficult and time-consuming to do calculations involving very large and very small numbers. This i

Find sampling interval - horizontal and vertical asymptote, In a digital fi...

In a digital filter, one of the parameters in its difference equation is given by the formula a) Show that the above formula has one horizontal and one vertical asymptote.

Determine the measure of angle, Using the expample provided below, if m∠ABE...

Using the expample provided below, if m∠ABE = 4x + 5 and m∠CBD = 7x - 10, Determine the measure of ∠ABE. a. 155° b. 73° c. 107° d. 25° d. ∠CBD and ∠ABE are vert

Permutations and combinations, Consider this. You have four units A, ...

Consider this. You have four units A, B, C and D. You are asked to select two out of these four units. How do you go about this particular task? Will your methodo

Differential equations, Verify Liouville''s formula for y "-y" - y'' + y = ...

Verify Liouville''s formula for y "-y" - y'' + y = 0 in (0, 1) ?

Matrix of r, Let R be the relation on S = {1, 2, 3, 4, 5} defined by R =...

Let R be the relation on S = {1, 2, 3, 4, 5} defined by R = {(1,3); (1, 1); (3, 1); (1, 2); (3, 3); (4, 4)}. (b) Write down the matrix of R. (c) Draw the digraph of R.

Trigonometry, A 25 foot ladder just reaches the top of a house and forms an...

A 25 foot ladder just reaches the top of a house and forms an angle of 41.5 degrees with the wall of the house. How tall is the house?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd