Simpson rule - approximating definite integrals, Mathematics

Assignment Help:

Simpson's Rule - Approximating Definite Integrals

This is the last method we're going to take a look at and in this case we will once again divide up the interval [a, b] into n subintervals.  Though, unlike the preceding two methods we want to require that n be even. The cause for this will be obvious in a bit. The width of every subinterval is,

Δx = b - a / n

In the Trapezoid Rule (explain earlier) we approximated the curve along with a straight line.  For this Rule (Simpson's Rule) we are going to approximate the function along with a quadratic and we're going to need that the quadratic agree with three of the points from our subintervals.  Below is a drawing of this using n = 6.  Every approximation is colored in a different way thus we can see how they actually work.

108_Simpson Rule - Approximating Definite Integrals.png

Note: In fact each approximation covers two of the subintervals. This is the cause for requiring n to be even.  A few approximations look much more like a line after that a quadratic, but they really are quadratics. As well note that some of the approximations do a better job as compared to others. It can be illustrated that the area under the approximation on the intervals [xi -1, xi] and [xi , xi+1] Δ is like this:

Ai = Δx / 3 (f(xi-1)+4f(xi) + f (xi+1))

If we make use of n subintervals the integral is then approximately,

 ∫ba  f (x) dx ≈  Δx / 3 (f(x0) + 4f (x1) + f (x2) + Δx / 3  (f (x2) + 4f (x3) + f (x4)) + ....+ Δx / 3 (f (xn-2) + 4f (xn-1) + f (xn))  

On simplifying we reach at the general Simpson's Rule.

 ∫ab   f (x) dx ≈ Δx / 3 [(f(x0) + 4f (x1) + 2f (x2) .... + 2f (xn-2) + 4f (xn-1) + f(xn)]

In the above case notice that all the function evaluations at points along with odd subscripts are multiplied by 4 and every function evaluations at points with even subscripts (apart from for the first and last) are multiplied by 2.  If you can keep in mind this, this is a quite easy rule to remember.


Related Discussions:- Simpson rule - approximating definite integrals

Distance traveled by car - word problem, Distance Traveled by Car - word pr...

Distance Traveled by Car - word problem: It takes a man 4 hours to reach a destination 1325 miles from his home. He drives to the airport at an average speed of 50 miles per h

Calculate the price of the horseracing track, There are five horseracing tr...

There are five horseracing tracks in Kentucky. The Kentucky legislature allows only one track to be open at a time. How does this restriction affect the price the track can charge

Mean and standard deviation, Q. Mean and Standard Deviation? Ans. ...

Q. Mean and Standard Deviation? Ans. The normal distribution is totally described if we know the average and standard deviation. - the population mean of the distribu

In the terms of x, The length of Kara's rectangular patio can be expressed ...

The length of Kara's rectangular patio can be expressed as 2x - 1 and the width can be expressed as x + 6. In the terms of x, what is the area of her patio? Since the area of a

Divisiblety test, find the greater value of a and b so that the following e...

find the greater value of a and b so that the following even numbers are divisible by both 3 and 5 : 2ab2a

Geometry, how do you do rotations

how do you do rotations

Critical points, Critical Point Definition : We say that x = c is a critic...

Critical Point Definition : We say that x = c is a critical point of function f(x) if f (c) exists & if either of the given are true. f ′ (c ) = 0        OR             f ′ (c

Find the maximum expected holdings, Problem: A person has 3 units of mo...

Problem: A person has 3 units of money available for investment in a business opportunity that matures in 1 year. The opportunity is risky in that the return is either double o

Large samples, LARGE SAMPLES These are samples that have a sample size ...

LARGE SAMPLES These are samples that have a sample size greater than 30(that is n>30) (a)   Estimation of population mean Here we suppose that if we take a large sample

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd