Simpson rule - approximating definite integrals, Mathematics

Assignment Help:

Simpson's Rule - Approximating Definite Integrals

This is the last method we're going to take a look at and in this case we will once again divide up the interval [a, b] into n subintervals.  Though, unlike the preceding two methods we want to require that n be even. The cause for this will be obvious in a bit. The width of every subinterval is,

Δx = b - a / n

In the Trapezoid Rule (explain earlier) we approximated the curve along with a straight line.  For this Rule (Simpson's Rule) we are going to approximate the function along with a quadratic and we're going to need that the quadratic agree with three of the points from our subintervals.  Below is a drawing of this using n = 6.  Every approximation is colored in a different way thus we can see how they actually work.

108_Simpson Rule - Approximating Definite Integrals.png

Note: In fact each approximation covers two of the subintervals. This is the cause for requiring n to be even.  A few approximations look much more like a line after that a quadratic, but they really are quadratics. As well note that some of the approximations do a better job as compared to others. It can be illustrated that the area under the approximation on the intervals [xi -1, xi] and [xi , xi+1] Δ is like this:

Ai = Δx / 3 (f(xi-1)+4f(xi) + f (xi+1))

If we make use of n subintervals the integral is then approximately,

 ∫ba  f (x) dx ≈  Δx / 3 (f(x0) + 4f (x1) + f (x2) + Δx / 3  (f (x2) + 4f (x3) + f (x4)) + ....+ Δx / 3 (f (xn-2) + 4f (xn-1) + f (xn))  

On simplifying we reach at the general Simpson's Rule.

 ∫ab   f (x) dx ≈ Δx / 3 [(f(x0) + 4f (x1) + 2f (x2) .... + 2f (xn-2) + 4f (xn-1) + f(xn)]

In the above case notice that all the function evaluations at points along with odd subscripts are multiplied by 4 and every function evaluations at points with even subscripts (apart from for the first and last) are multiplied by 2.  If you can keep in mind this, this is a quite easy rule to remember.


Related Discussions:- Simpson rule - approximating definite integrals

Second order differential equations, In the earlier section we looked at fi...

In the earlier section we looked at first order differential equations. In this section we will move on to second order differential equations. Just as we did in the previous secti

In how many years is the population expected to be 42, The population of a ...

The population of a particular city is increasing at a rate proportional to its size. It follows the function P(t) = 1 + ke 0.1t where k is a constant and t is the time in years.

The Bake Sale, Lindy has 48 chocolate chip cookies and 64 vanilla wafer coo...

Lindy has 48 chocolate chip cookies and 64 vanilla wafer cookies. How many bags can Lindy fill if she puts the chocolate chip cookies and the vanilla wafers in the same bag? She pl

Real numbers, how to present root numbers on a number line

how to present root numbers on a number line

Explain multiplying-dividing negative fractions, Explain Multiplying/Dividi...

Explain Multiplying/Dividing Negative Fractions? There are 3 steps to multiplying or dividing fractions. 1. If any negative signs are present, place them next to the numerator

Solve 4 sin 2 ( t ) - 3 sin ( t /3)= 1, Solve 4 sin 2 ( t ) - 3 sin ( t /...

Solve 4 sin 2 ( t ) - 3 sin ( t /3)= 1 . Solution Before solving this equation let's solve clearly unrelated equation. 4x 2 - 3x = 1  ⇒ 4x 2 - 3x -1 = ( 4x + 1) ( x

Lori, rewrite the problem so that the divisor is a whole number...8.5/2.3

rewrite the problem so that the divisor is a whole number...8.5/2.3

About algebra, how do i compute an algebra number

how do i compute an algebra number

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd