Simpson rule - approximating definite integrals, Mathematics

Assignment Help:

Simpson's Rule - Approximating Definite Integrals

This is the last method we're going to take a look at and in this case we will once again divide up the interval [a, b] into n subintervals.  Though, unlike the preceding two methods we want to require that n be even. The cause for this will be obvious in a bit. The width of every subinterval is,

Δx = b - a / n

In the Trapezoid Rule (explain earlier) we approximated the curve along with a straight line.  For this Rule (Simpson's Rule) we are going to approximate the function along with a quadratic and we're going to need that the quadratic agree with three of the points from our subintervals.  Below is a drawing of this using n = 6.  Every approximation is colored in a different way thus we can see how they actually work.

108_Simpson Rule - Approximating Definite Integrals.png

Note: In fact each approximation covers two of the subintervals. This is the cause for requiring n to be even.  A few approximations look much more like a line after that a quadratic, but they really are quadratics. As well note that some of the approximations do a better job as compared to others. It can be illustrated that the area under the approximation on the intervals [xi -1, xi] and [xi , xi+1] Δ is like this:

Ai = Δx / 3 (f(xi-1)+4f(xi) + f (xi+1))

If we make use of n subintervals the integral is then approximately,

 ∫ba  f (x) dx ≈  Δx / 3 (f(x0) + 4f (x1) + f (x2) + Δx / 3  (f (x2) + 4f (x3) + f (x4)) + ....+ Δx / 3 (f (xn-2) + 4f (xn-1) + f (xn))  

On simplifying we reach at the general Simpson's Rule.

 ∫ab   f (x) dx ≈ Δx / 3 [(f(x0) + 4f (x1) + 2f (x2) .... + 2f (xn-2) + 4f (xn-1) + f(xn)]

In the above case notice that all the function evaluations at points along with odd subscripts are multiplied by 4 and every function evaluations at points with even subscripts (apart from for the first and last) are multiplied by 2.  If you can keep in mind this, this is a quite easy rule to remember.


Related Discussions:- Simpson rule - approximating definite integrals

Rational Number Application, in the horizontal bar event the u.s.a scored 2...

in the horizontal bar event the u.s.a scored 28.636,gremany scroed 28.7,romnia scored 27.962,and chain scored 28.537 points.which list shows these scored in descending order

Write down two more reasons why division is difficult, Write down two more ...

Write down two more reasons why children consider 'division' difficult. Regarding the first reason given above, one of fie few division related experiences that the child perhaps d

Percents., the cost of paint used in a redecorating job is $65.70 .This is ...

the cost of paint used in a redecorating job is $65.70 .This is a reduction from its original cost of $82.13 .What is the percent decrease in the cost of paint to the nearest perce

The larger angle 15 find the measure of the smaller angle, Two angles are c...

Two angles are complementary. The larger angle is 15° more than twice the smaller. Find out the measure of the smaller angle. Let x = the number of degrees in the smaller angle

Conditional statement, if two lines in s plane never intersect then they ar...

if two lines in s plane never intersect then they are parallel

Interpretation of r – problems in interpreting r values, Interpretation of ...

Interpretation of r - Problems in interpreting r values A high value of r as +0.9 or - 0.9 only shows a strong association among the two variables but doesn't imply that th

Find out the linear approximation, Find out the linear approximation for a...

Find out the linear approximation for at x =8 .  Utilizes the linear approximation to approximate the value of  and Solution Since it is just the tangent line there

Understanding Logistics, How can i get a better understanding of logistics ...

How can i get a better understanding of logistics without having a degree on logistics and knowledge of it? Simply, in a very basic form..

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd