Simpson rule - approximating definite integrals, Mathematics

Assignment Help:

Simpson's Rule - Approximating Definite Integrals

This is the last method we're going to take a look at and in this case we will once again divide up the interval [a, b] into n subintervals.  Though, unlike the preceding two methods we want to require that n be even. The cause for this will be obvious in a bit. The width of every subinterval is,

Δx = b - a / n

In the Trapezoid Rule (explain earlier) we approximated the curve along with a straight line.  For this Rule (Simpson's Rule) we are going to approximate the function along with a quadratic and we're going to need that the quadratic agree with three of the points from our subintervals.  Below is a drawing of this using n = 6.  Every approximation is colored in a different way thus we can see how they actually work.

108_Simpson Rule - Approximating Definite Integrals.png

Note: In fact each approximation covers two of the subintervals. This is the cause for requiring n to be even.  A few approximations look much more like a line after that a quadratic, but they really are quadratics. As well note that some of the approximations do a better job as compared to others. It can be illustrated that the area under the approximation on the intervals [xi -1, xi] and [xi , xi+1] Δ is like this:

Ai = Δx / 3 (f(xi-1)+4f(xi) + f (xi+1))

If we make use of n subintervals the integral is then approximately,

 ∫ba  f (x) dx ≈  Δx / 3 (f(x0) + 4f (x1) + f (x2) + Δx / 3  (f (x2) + 4f (x3) + f (x4)) + ....+ Δx / 3 (f (xn-2) + 4f (xn-1) + f (xn))  

On simplifying we reach at the general Simpson's Rule.

 ∫ab   f (x) dx ≈ Δx / 3 [(f(x0) + 4f (x1) + 2f (x2) .... + 2f (xn-2) + 4f (xn-1) + f(xn)]

In the above case notice that all the function evaluations at points along with odd subscripts are multiplied by 4 and every function evaluations at points with even subscripts (apart from for the first and last) are multiplied by 2.  If you can keep in mind this, this is a quite easy rule to remember.


Related Discussions:- Simpson rule - approximating definite integrals

Geometry, Given: ??????? is supp. to ??????? ???? ????? bisects ??????? ?...

Given: ??????? is supp. to ??????? ???? ????? bisects ??????? ???? ????? bisects ??????? Prove: ??????? is a rt. ?

Vectors, apllication in business and economics

apllication in business and economics

Integraton, how to find area under a curve

how to find area under a curve

Complementary addition-word problems related to subtraction, Complementary ...

Complementary addition -what number how many things should be added to one number or group to get the other. (e.g., a classroom can seat 50 children, and 20 children are already s

Find the time required for an enlargement, 1. The polynomial G(x) = -0.006x...

1. The polynomial G(x) = -0.006x4 + 0.140x3 - 0.53x2 + 1.79x measures the concentration of a dye in the bloodstream x seconds after it is injected. Does the concentration increase

Heaviside or step function limit, Heaviside or step function limit : Calcu...

Heaviside or step function limit : Calculates the value of the following limit. Solution This function is frequently called either the Heaviside or step function. We

Integers, hi i would like to ask you what is the answer for [-9]=[=5] grade...

hi i would like to ask you what is the answer for [-9]=[=5] grade 7

Objectives of multiplication and division, Objectives After reading t...

Objectives After reading this unit, you should be able to 1. Explain the meaning of multiplication / division and interpret it in different contexts; 2. Convert symbo

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd