Simpson rule - approximating definite integrals, Mathematics

Assignment Help:

Simpson's Rule - Approximating Definite Integrals

This is the last method we're going to take a look at and in this case we will once again divide up the interval [a, b] into n subintervals.  Though, unlike the preceding two methods we want to require that n be even. The cause for this will be obvious in a bit. The width of every subinterval is,

Δx = b - a / n

In the Trapezoid Rule (explain earlier) we approximated the curve along with a straight line.  For this Rule (Simpson's Rule) we are going to approximate the function along with a quadratic and we're going to need that the quadratic agree with three of the points from our subintervals.  Below is a drawing of this using n = 6.  Every approximation is colored in a different way thus we can see how they actually work.

108_Simpson Rule - Approximating Definite Integrals.png

Note: In fact each approximation covers two of the subintervals. This is the cause for requiring n to be even.  A few approximations look much more like a line after that a quadratic, but they really are quadratics. As well note that some of the approximations do a better job as compared to others. It can be illustrated that the area under the approximation on the intervals [xi -1, xi] and [xi , xi+1] Δ is like this:

Ai = Δx / 3 (f(xi-1)+4f(xi) + f (xi+1))

If we make use of n subintervals the integral is then approximately,

 ∫ba  f (x) dx ≈  Δx / 3 (f(x0) + 4f (x1) + f (x2) + Δx / 3  (f (x2) + 4f (x3) + f (x4)) + ....+ Δx / 3 (f (xn-2) + 4f (xn-1) + f (xn))  

On simplifying we reach at the general Simpson's Rule.

 ∫ab   f (x) dx ≈ Δx / 3 [(f(x0) + 4f (x1) + 2f (x2) .... + 2f (xn-2) + 4f (xn-1) + f(xn)]

In the above case notice that all the function evaluations at points along with odd subscripts are multiplied by 4 and every function evaluations at points with even subscripts (apart from for the first and last) are multiplied by 2.  If you can keep in mind this, this is a quite easy rule to remember.


Related Discussions:- Simpson rule - approximating definite integrals

Triangle treat, what letters to fill in the boxes

what letters to fill in the boxes

Find out the slope of equations, Example:  find out the slope of equations ...

Example:  find out the slope of equations and sketch the graph of the line.                         2 y - 6x = -2 Solution To get the slope we'll first put this in slope

Trignometry, prove that cos(a)/1-sin(a)=tan(45+A/2)

prove that cos(a)/1-sin(a)=tan(45+A/2)

Show that the height of the opposite house, From a window x meters hi...

From a window x meters high above the ground in a street, the angles of elevation and depression of the top and the foot of the other house on the opposite side of the street  are

Proof for absolute convergence - sequences and series, Proof for Absolute C...

Proof for Absolute Convergence Very first notice that |a n | is either a n or it is - a n depending upon its sign.  The meaning of this is that we can then say, 0 a n +

1, how do you find the perimeter of an equalateral triangle

how do you find the perimeter of an equalateral triangle

Integration and differentiation, Integration and Differentiation Diffe...

Integration and Differentiation Differentiation deals along with the determination of the rates of change of business activities or merely the process of finding the derivativ

Divide by 1-digit numbers, which experession can be used to check the quoti...

which experession can be used to check the quotient 646 divided by 3

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd