Simpson rule - approximating definite integrals, Mathematics

Assignment Help:

Simpson's Rule - Approximating Definite Integrals

This is the last method we're going to take a look at and in this case we will once again divide up the interval [a, b] into n subintervals.  Though, unlike the preceding two methods we want to require that n be even. The cause for this will be obvious in a bit. The width of every subinterval is,

Δx = b - a / n

In the Trapezoid Rule (explain earlier) we approximated the curve along with a straight line.  For this Rule (Simpson's Rule) we are going to approximate the function along with a quadratic and we're going to need that the quadratic agree with three of the points from our subintervals.  Below is a drawing of this using n = 6.  Every approximation is colored in a different way thus we can see how they actually work.

108_Simpson Rule - Approximating Definite Integrals.png

Note: In fact each approximation covers two of the subintervals. This is the cause for requiring n to be even.  A few approximations look much more like a line after that a quadratic, but they really are quadratics. As well note that some of the approximations do a better job as compared to others. It can be illustrated that the area under the approximation on the intervals [xi -1, xi] and [xi , xi+1] Δ is like this:

Ai = Δx / 3 (f(xi-1)+4f(xi) + f (xi+1))

If we make use of n subintervals the integral is then approximately,

 ∫ba  f (x) dx ≈  Δx / 3 (f(x0) + 4f (x1) + f (x2) + Δx / 3  (f (x2) + 4f (x3) + f (x4)) + ....+ Δx / 3 (f (xn-2) + 4f (xn-1) + f (xn))  

On simplifying we reach at the general Simpson's Rule.

 ∫ab   f (x) dx ≈ Δx / 3 [(f(x0) + 4f (x1) + 2f (x2) .... + 2f (xn-2) + 4f (xn-1) + f(xn)]

In the above case notice that all the function evaluations at points along with odd subscripts are multiplied by 4 and every function evaluations at points with even subscripts (apart from for the first and last) are multiplied by 2.  If you can keep in mind this, this is a quite easy rule to remember.


Related Discussions:- Simpson rule - approximating definite integrals

Prove asymptotic bounds for recursion relations, 1. (‡) Prove asymptotic b...

1. (‡) Prove asymptotic bounds for the following recursion relations. Tighter bounds will receive more marks. You may use the Master Theorem if it applies. 1. C(n) = 3C(n/2) + n

Marketing, In a 2500 word report do the market analysis of China. Under thi...

In a 2500 word report do the market analysis of China. Under this you have to explain: - What are the advantages and disadvantages for foreign company to set up its business cent

Solving equations by completing the square method, I need help for Solving ...

I need help for Solving Equations by Completing the Square Method, can anybody help me out for this?

Which of the following binomials could represent the length, The area of Mr...

The area of Mr. Smith's rectangular classroom is x 2 - 25. Which of the following binomials could represent the length and the width of the room? Since area of a rectangle is

Cartesian Coordinates, In the view below of the robot type of Cartesian Coo...

In the view below of the robot type of Cartesian Coordinates, is not the "Z" and "Y" coordinates reversed? http://www.expertsmind.com/topic/robot-types/cartesian-coordinates-91038

Prove that the length of the altitude on the hypotenuse, If A be the area o...

If A be the area of a right triangle and b one of the sides containing the right angle, prove that the length of the altitude on the hypotenuse is 2  Ab /√ b 4 +4A 2 . An

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd