Simpson rule - approximating definite integrals, Mathematics

Assignment Help:

Simpson's Rule - Approximating Definite Integrals

This is the last method we're going to take a look at and in this case we will once again divide up the interval [a, b] into n subintervals.  Though, unlike the preceding two methods we want to require that n be even. The cause for this will be obvious in a bit. The width of every subinterval is,

Δx = b - a / n

In the Trapezoid Rule (explain earlier) we approximated the curve along with a straight line.  For this Rule (Simpson's Rule) we are going to approximate the function along with a quadratic and we're going to need that the quadratic agree with three of the points from our subintervals.  Below is a drawing of this using n = 6.  Every approximation is colored in a different way thus we can see how they actually work.

108_Simpson Rule - Approximating Definite Integrals.png

Note: In fact each approximation covers two of the subintervals. This is the cause for requiring n to be even.  A few approximations look much more like a line after that a quadratic, but they really are quadratics. As well note that some of the approximations do a better job as compared to others. It can be illustrated that the area under the approximation on the intervals [xi -1, xi] and [xi , xi+1] Δ is like this:

Ai = Δx / 3 (f(xi-1)+4f(xi) + f (xi+1))

If we make use of n subintervals the integral is then approximately,

 ∫ba  f (x) dx ≈  Δx / 3 (f(x0) + 4f (x1) + f (x2) + Δx / 3  (f (x2) + 4f (x3) + f (x4)) + ....+ Δx / 3 (f (xn-2) + 4f (xn-1) + f (xn))  

On simplifying we reach at the general Simpson's Rule.

 ∫ab   f (x) dx ≈ Δx / 3 [(f(x0) + 4f (x1) + 2f (x2) .... + 2f (xn-2) + 4f (xn-1) + f(xn)]

In the above case notice that all the function evaluations at points along with odd subscripts are multiplied by 4 and every function evaluations at points with even subscripts (apart from for the first and last) are multiplied by 2.  If you can keep in mind this, this is a quite easy rule to remember.


Related Discussions:- Simpson rule - approximating definite integrals

Marketing management , #How are Indian customers visiting Shoppers’ Stop an...

#How are Indian customers visiting Shoppers’ Stop any different from customers of developed western countries?

Calculus, Determine the linear approximation for f(x)= sin delta at delta =...

Determine the linear approximation for f(x)= sin delta at delta =0

Evaluate performance of mental arithmetic maths, E 1) Try the two activitie...

E 1) Try the two activities detailed above with a few children around you Evaluate whether they really helped to improve the children's performance of mental arithmetic. Anot

Trigonometry, how to work out consumer arithmetic?

how to work out consumer arithmetic?

First order differential equations, In this section we will consider for so...

In this section we will consider for solving first order differential equations. The most common first order differential equation can be written as: dy/dt = f(y,t) As we wil

Compositions of relations, Let Consider R A Χ B, S B Χ C be two relation...

Let Consider R A Χ B, S B Χ C be two relations. Then compositions of the relations S and R given by SoR A Χ C and is explained by (a, c) €(S o R) iff € b € B like (a, b) € R,

Volume of grains in the silo , The volume of grains in a silo at a particul...

The volume of grains in a silo at a particular time (measured in hours) is given by V (t) = 4t(3-t) m3. Find the rate of change of the volume of grains in the silo from first princ

Parametric curve - parametric equations & polar coordinates, Parametric Cur...

Parametric Curve - Parametric Equations & Polar Coordinates Here now, let us take a look at just how we could probably get two tangents lines at a point.  This was surely not

Inequation, Solve the inequation: |x|

Solve the inequation: |x|

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd