Simpson rule - approximating definite integrals, Mathematics

Assignment Help:

Simpson's Rule - Approximating Definite Integrals

This is the last method we're going to take a look at and in this case we will once again divide up the interval [a, b] into n subintervals.  Though, unlike the preceding two methods we want to require that n be even. The cause for this will be obvious in a bit. The width of every subinterval is,

Δx = b - a / n

In the Trapezoid Rule (explain earlier) we approximated the curve along with a straight line.  For this Rule (Simpson's Rule) we are going to approximate the function along with a quadratic and we're going to need that the quadratic agree with three of the points from our subintervals.  Below is a drawing of this using n = 6.  Every approximation is colored in a different way thus we can see how they actually work.

108_Simpson Rule - Approximating Definite Integrals.png

Note: In fact each approximation covers two of the subintervals. This is the cause for requiring n to be even.  A few approximations look much more like a line after that a quadratic, but they really are quadratics. As well note that some of the approximations do a better job as compared to others. It can be illustrated that the area under the approximation on the intervals [xi -1, xi] and [xi , xi+1] Δ is like this:

Ai = Δx / 3 (f(xi-1)+4f(xi) + f (xi+1))

If we make use of n subintervals the integral is then approximately,

 ∫ba  f (x) dx ≈  Δx / 3 (f(x0) + 4f (x1) + f (x2) + Δx / 3  (f (x2) + 4f (x3) + f (x4)) + ....+ Δx / 3 (f (xn-2) + 4f (xn-1) + f (xn))  

On simplifying we reach at the general Simpson's Rule.

 ∫ab   f (x) dx ≈ Δx / 3 [(f(x0) + 4f (x1) + 2f (x2) .... + 2f (xn-2) + 4f (xn-1) + f(xn)]

In the above case notice that all the function evaluations at points along with odd subscripts are multiplied by 4 and every function evaluations at points with even subscripts (apart from for the first and last) are multiplied by 2.  If you can keep in mind this, this is a quite easy rule to remember.


Related Discussions:- Simpson rule - approximating definite integrals

Give a definition of perimeter and area, Give a Definition of Perimeter and...

Give a Definition of Perimeter and Area? Perimeter is the distance around a flat (2-dimensional) shape. Area is the amount of space taken up by a flat (2-dimensional) shape. is

Siquence aned series, if 4,a and 16 are in the geometric sequence. Find the...

if 4,a and 16 are in the geometric sequence. Find the value

Differential equations and group methods, solve the differential equation ...

solve the differential equation dy/dx=f(y)x^n+g(y)x^m by finding a one-parameter group leaving it invariant

The length of the field is 2 more than twice the width field, Samantha owns...

Samantha owns a rectangular field that has an area of 3,280 square feet. The length of the field is 2 more than twice the width. What is the width of the field? Let w = the wid

Constant aceleration formulae, a car comes to a stop from a speed of 30m/s ...

a car comes to a stop from a speed of 30m/s in a distance of 804m. The driver brakes so as to produce a decelration of 1/2m per sec sqaured to begin withand then brakes harder to p

Sketch several trajectories for the system, Sketch several trajectories for...

Sketch several trajectories for the system, x 1 ' = x 1 + 2x 2                                                                                x 2 ' = 3x 1 + 2x 2

Determine principal strains and direction , A 100 by 150 mm rectangular pla...

A 100 by 150 mm rectangular plate is deformed as shown in the following figure. All dimensions shown in the figure are in millimeters.  Determine at point Q: (a) the strain compone

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd