Signaling - universal serial bus , Computer Engineering

Assignment Help:

Signaling - Universal Serial Bus:

USB supports following signaling rates:

o   A low speed rate of 1.5 Mbit/s is defined by USB 1.0. This is so much similar to "full speed" operation except each bit takes 8 times as long to transmit. It is intended primarily to save price in low-bandwidth human interface components (HID) such as mice, keyboards and joysticks.

o   A hi-speed (USB 2.0) rate of 480 M bit/s was introduced in the year2001. All hi-speed components are capable of falling  back  to  full-speed  operation  if  needed;  they  are  backward  compatible.  Connectors are identical.

o   The full speed rate of 12 Mbit/s is the fundamental USB data rate which is defined by USB 1.1. All USB hubs hold up full speed.

o   A Super Speed (USB 3.0) rate of 5.0 Gbit/s. The USB 3.0 requirement was released by Intel and partners in the year 2008, according to early reports from CNET news. The first USB 3 controller chips were sampled by NEC May  in the year 2009  [11] and generate by using the 3.0 specification are expected to arrive beginning in Q3 2009 and 2010.[12]  USB 3.0 connectors are usually backwards compatible, but include new wiring and full duplex operation. There is little incompatibility with older connectors.

USB signals are transmitted on a braided pair data cable having 90Ω ±15% Characteristic impedance,[13] labeled D- and D+ Prior to USB 3.0, These all collectively use in half-duplex differential signaling to reduce the effects of electromagnetic noise on longer lines. Transmitted signal levels are in the range 0.0-0.3 volts for low and in the range 2.8-3.6 volts for high in full speed (FS) and low speed (LS) modes, and -10-10 mV for low and 360-440 mV for high in hi- speed (HS) mode. In Full Speed mode the cable wires are not terminated, but in the HS mode has termination of 45 Ω to ground, or 90 Ω differentials to match the data cable impedance, by reducing interference of specific kinds. USB3.0 introduces 2 extra pairs of shielded twisted wire and new, mostly interoperable contacts in USB3.0 cables, for them. They allow the higher data rate, and also full duplex operation.

A USB connection  is  always  among a  host  or  hub at  the "A" connector  end,  and  a component  or  hub's "upstream" port at the other end. Initially, it was a "B' connector, saving from erroneous loop connections, but extra added upstream connectors were precise, and some cable vendors designed and sold cables which allowed erroneous connections (and potential damage to the circuitry). USB interconnections are not as perfect or as effortless as originally intended.

The host includes 15 kΩ pull-down resistors on each data line. While no device is connected, this pulls both data lines low into the so-called "single-ended zero" state (SE0 in the USB documentation), and mention a disconnected or reset connection.

A USB device pulls 1 of the data lines high having a 1.5 kΩ resistor. it overpowers 1 of the pull-down resistors in the host and leaves the data lines in an idle state which is called "J". For USB 1.x, the option of data line indicates a device's speed support; full-speed components pull D+ high, while low-speed devices pull D- high.

USB data is transmitted by toggling the data lines between the opposite K state and the J state. USB encodes data by using the NRZI convention; a 0 bit is transmitted by toggling the data lines from J to K or vice-versa, when a 1 bit is transmitted by leaving the data lines as-is. To ensure a minimum density of signal transitions USB uses bit stuffing technique; an extra 0 bit is inserted into the data stream after any appearance of 6 consecutive 1 bits. 7 consecutive 1 bits is all the time an error. USB 3.00 has included extra added data transmission encodings.

A USB packet starts with an 8-bit synchronization sequence 00000001. That is data lines toggle KJKJKJKK, after the initial idle state J. The final 1 bit (repeated K state) marks the end of the sync pattern and the starting of the USB frame.

A USB packet's end which is called EOP (end-of-packet), is specified by the transmitter driving 2 bit times of SE0 (D+ and D- both below max) and 1 bit time of J state. After this, the transmitter ceases to drive the D-/D+ lines and the aforementioned pull up resistors hold it in the J (idle) state. Sometimes skew due to reason of hubs may add as much as one bit time before the SE0 of the end of packet. This extra bit can be result in a "bit stuff violation" if the 6 bits before it in the CRC are '1's. This bit should be avoided by receiver.

A USB bus can reset by using a prolonged (10 to 20 milliseconds) SE0 signal.


Related Discussions:- Signaling - universal serial bus

Methodology and data collection in e-commerce, Introduction Our resear...

Introduction Our research methodology requires gathering relevant data from the specified documents in order to analyze the material and arrive at more complete understanding

Where virtual memory is used, Where Virtual memory is used ? Ans. Virtu...

Where Virtual memory is used ? Ans. Virtual memory is utilized in all main commercial operating systems.

What is the relation between response time and throughput, The Throughput g...

The Throughput graph represents the amount of data in bytes that the Vusers received from the server in a second. When we evaluate this with the transaction response time, we will

Binary search tree, Given the following interface public interface WordS...

Given the following interface public interface WordSet extends Iterable { public void add(Word word); // Add word if not already added public boolean contains(Word word);

Discuss in brief the history of e-commerce, Discuss in brief the history of...

Discuss in brief the history of E-Commerce. History of E-commerce illustrated below: E-commerce began before personal computers were prevalent and has grown into a multibill

Associativity of connectives - equivalences rules, Associativity of Connect...

Associativity of Connectives : Here brackets are very important in order to tell us where to perform calculations in arithmetic and logic. By using these brackets we evaluate

What is precloud computing, What is precloud computing? Precloud comput...

What is precloud computing? Precloud computing is an email access was through a single computer, which also keeps all email messages. Example: Microsoft Outlook or Outlook Expr

DISCRETE STRUCTURES, SET 2I OF ALL INTEGERS WITH ZERO IS AN ABELIAN GROUP

SET 2I OF ALL INTEGERS WITH ZERO IS AN ABELIAN GROUP

Explain overlay structured program, Explain overlay structured program ? ...

Explain overlay structured program ? A program having overlays is termed as overlay structured program, here an overlay is a part of program that has similar load origin as som

Explain that lost acknowledgement in packet retransmission, Explain that th...

Explain that the lost acknowledgement does not necessarily enforce retransmission of the packet . To guarantee reliable transfer, protocols utilize positive acknowledgement al

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd