Show trigonometric functions on a graph, Mathematics

Assignment Help:

Q. Show Trigonometric Functions on a Graph?

Ans.

By discussing the trig functions with respect to an angle in a right-angle triangle, we have only considered angles between 0o and 90o. What about angles of 90o and larger?

For simplicity, lets concentrate on the unit circle. When the angle is between zero and ninety degrees, we can use a triangle to help us find sine, cosine and tangent of the angle.

2125_Show Trigonometric Functions on a Graph.gif

From this diagram, you can see that sinθ = y , cosθ = x and tan θ = y/x when 0o< θ<90o or 0 < θ < Π.

We can use everything we know about angles between 0 and Π/2 , to find the values of sine, cosine and tangent of ALL angles! 
(Remember that we are only dealing with points on the unit circle at the moment!)

Let's consider all four quadrants of the Cartesian plane.

214_Show Trigonometric Functions on a Graph1.gif

First consider the second quadrant with angles between 90o and 180o.

34_Show Trigonometric Functions on a Graph3.gif

The angles θ and Φ are related as follows:

1299_Show Trigonometric Functions on a Graph4.gif

Since 0o < Φ < 90o we can use a right-angle triangle to find sinΦ.

1922_Show Trigonometric Functions on a Graph5.gif

sinΦ = y , cosΦ = x and tanΦ = y/x BUT notice that in this quadrant, x is negative! Thus cos Φ and tan Φ are both negative, but sin Φ is positive.

This is all well and good, but why are we looking at sin Φ when all we want to know is sinθ ?WHY?

Thus sin θ = sin(Π -θ), cos θ = -cos (Π -θ) and tan θ = -tan (Π -θ)

In fact, aside from the first quadrant, all the other quadrants have only one of sine, cosine or tangent positive.

sin θ is positive in the second quadrant.

tan θ is positive in the third quadrant.

cos θ is positive in the fourth quadrant.

Although we restricted ourselves to all the points on the unit circle, the trigonometric functions are dependent purely on the angle. Thus we now know the sine, cosine and tangent of every angle

2466_Show Trigonometric Functions on a Graph6.gif

The following picture shows which functions are positive in the four quadrants.

887_Show Trigonometric Functions on a Graph7.gif

Here is a simple way to help you remember this information. Write the word CAST counter-clockwise beginning in the fourth quadrant. These letters symbolize which functions are positive.

2231_Show Trigonometric Functions on a Graph8.gif


Related Discussions:- Show trigonometric functions on a graph

Prove that the length of the altitude on the hypotenuse, If A be the area o...

If A be the area of a right triangle and b one of the sides containing the right angle, prove that the length of the altitude on the hypotenuse is 2  Ab /√ b 4 +4A 2 . An

Trigonometry, 1-tan^2 A/1+tan^2 = cos A - sinA/cos A

1-tan^2 A/1+tan^2 = cos A - sinA/cos A

Find the curve on the surface - shortest arc lenght, (a) Find the curve on ...

(a) Find the curve on the surface z=x 3/2 joining the points(x,y,z)=(0,0,0) and (1,1,1) has the shortest arc lenght? (b) Use a computer to produce a plot showing the surface an

Geometry, #question.onstruct/draw geometric shapes with specific condition....

#question.onstruct/draw geometric shapes with specific condition.

Fracrions, how do u do fractions on a nummber line

how do u do fractions on a nummber line

Trigonometry, important trigonometric formulas for class 10th CBSC board

important trigonometric formulas for class 10th CBSC board

Addition of like terms with same signs, Case 1: Suppose we are given...

Case 1: Suppose we are given expressions like 3abc and 7abc and asked to compute their sum. If this is the case we should not worry much. Because adding like exp

Calculate the total surface area which is exposed , A golf ball has a diame...

A golf ball has a diameter equal to 4.1cm. Its surface has 150 dimples each of radius 2mm. Calculate the total surface area which is exposed to the surroundings assuming that the d

Solve the recurrence relation, Solve the recurrence relation T ...

Solve the recurrence relation T (K) = 2T (K-1), T (0) = 1 Ans: The following equation can be written in the subsequent form:  t n - 2t n-1 =  0  Here now su

Laplace transforms, As we saw in the previous section computing Laplace tra...

As we saw in the previous section computing Laplace transforms directly can be quite complex. Generally we just utilize a table of transforms when actually calculating Laplace tran

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd