Several operations on a aa-tree, Data Structure & Algorithms

Assignment Help:

The following are several operations on a AA-tree:

1. Searching: Searching is done using an algorithm which is similar to the search algorithm of a binary search tree.

2. Insertion: The insertion procedure always starts from the bottom level. However, whereas performing this function, either of the two troubles can occur:

    (a) Two consecutive horizontal links (right side)

    (b) Left horizontal link.

Whereas studying the properties of AA-tree, we said that conditions (a) and (b) must not be satisfied. Therefore, in order to eliminate conditions (a) and (b), we employ two new functions namely skew ( ) & split( ) depend on the rotations of the node, so that all the properties of AA-trees are retained.

The condition that (a) two consecutive horizontal links in an AA-tree can be eliminated by a left rotation by split( ) while the condition (b) can be eliminated by right rotations through function show( ). Either of these functions can eliminate this condition, but can also arise the other condition. Let us show it with an example. Imagine, in the AA-tree of Figure, we have to insert node 50.

According to the condition, the node 50 will be added at the bottom level in such a way that it satisfies Binary Search tree property also

Now, we have to be aware as to how this left rotation is performed. Keep in mind, that rotation is introduced in Red-black tree and these rotations (left and right) are the similar as we performed in a Red-Black tree. Now, again split ( ) has removed its condition although has created skew conditions. Thus, skew ( ) function will now be called again and again till a complete AA-tree with a no false condition is obtained.

A skew problem arises since node 90 is two-level lower than its parent 75 and thus in order to avoid this, we call skew / split function again.

Therefore, introducing horizontal left links, to avoid left horizontal links and making them right horizontal links, we make three calls to skew and then two calls to split to remove consecutive horizontal links

A Treap is another kind of Binary Search tree and has one property distinct from other types of trees. Each of the nodes in the tree stores an item, a left & right pointer and a priority that is randomly assigned while the node is created. Whereas assigning the priority, it is essential that the heap order priority has to be maintained: node's priority must be at least as large as its parent's. A treap is both binary search tree with respect to node elements and a heap with respect to node priorities.


Related Discussions:- Several operations on a aa-tree

Non Recursive Algorithm to Traverse a Binary Tree, Q. Write down a non recu...

Q. Write down a non recursive algorithm to traverse a binary tree in order.                    Ans: N on - recursive algorithm to traverse a binary tree in inorder is as

Explain the question, Merging 4 sorted files having 50, 10, 25 and 15 recor...

Merging 4 sorted files having 50, 10, 25 and 15 records will take time

Algorithm for the selection sort, Q. Give the algorithm for the selection s...

Q. Give the algorithm for the selection sort. Describe the behaviours of selection sort when the input given is already sorted.

Graph traversal, 1) Which graph traversal uses a queue to hold vertices whi...

1) Which graph traversal uses a queue to hold vertices which are to be processed next ? 2) Which of the graph traversal is recursive by nature? 3) For a dense graph, Prim's a

Efficient way of storing a sparse matrix in memory, Explain an efficient wa...

Explain an efficient way of storing a sparse matrix in memory.   A matrix in which number of zero entries are much higher than the number of non zero entries is called sparse mat

Binary tree, A binary tree is a tree data structures in which each node hav...

A binary tree is a tree data structures in which each node have at most two child nodes, generally distinguished as "right" and "left". Nodes with children are called parent nodes,

Explain open addressing, Open addressing The easiest way to resolve a c...

Open addressing The easiest way to resolve a collision is to start with the hash address and do a sequential search by the table for an empty location.

What are expression trees, What are expression trees?  The leaves of an...

What are expression trees?  The leaves of an expression tree are operands, like as constants or variable names, and the other nodes have operators. This certain tree happens to

Randomized algorithm, need an expert to help me with the assignment

need an expert to help me with the assignment

Stack, Explain the array and linked list implementation of stack

Explain the array and linked list implementation of stack

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd