Several operations on a aa-tree, Data Structure & Algorithms

Assignment Help:

The following are several operations on a AA-tree:

1. Searching: Searching is done using an algorithm which is similar to the search algorithm of a binary search tree.

2. Insertion: The insertion procedure always starts from the bottom level. However, whereas performing this function, either of the two troubles can occur:

    (a) Two consecutive horizontal links (right side)

    (b) Left horizontal link.

Whereas studying the properties of AA-tree, we said that conditions (a) and (b) must not be satisfied. Therefore, in order to eliminate conditions (a) and (b), we employ two new functions namely skew ( ) & split( ) depend on the rotations of the node, so that all the properties of AA-trees are retained.

The condition that (a) two consecutive horizontal links in an AA-tree can be eliminated by a left rotation by split( ) while the condition (b) can be eliminated by right rotations through function show( ). Either of these functions can eliminate this condition, but can also arise the other condition. Let us show it with an example. Imagine, in the AA-tree of Figure, we have to insert node 50.

According to the condition, the node 50 will be added at the bottom level in such a way that it satisfies Binary Search tree property also

Now, we have to be aware as to how this left rotation is performed. Keep in mind, that rotation is introduced in Red-black tree and these rotations (left and right) are the similar as we performed in a Red-Black tree. Now, again split ( ) has removed its condition although has created skew conditions. Thus, skew ( ) function will now be called again and again till a complete AA-tree with a no false condition is obtained.

A skew problem arises since node 90 is two-level lower than its parent 75 and thus in order to avoid this, we call skew / split function again.

Therefore, introducing horizontal left links, to avoid left horizontal links and making them right horizontal links, we make three calls to skew and then two calls to split to remove consecutive horizontal links

A Treap is another kind of Binary Search tree and has one property distinct from other types of trees. Each of the nodes in the tree stores an item, a left & right pointer and a priority that is randomly assigned while the node is created. Whereas assigning the priority, it is essential that the heap order priority has to be maintained: node's priority must be at least as large as its parent's. A treap is both binary search tree with respect to node elements and a heap with respect to node priorities.


Related Discussions:- Several operations on a aa-tree

Multiple stacks, how multiple stacks can be implemented using one dimension...

how multiple stacks can be implemented using one dimensional array

Analysis of algorithms, A common person's faith is that a computer can do a...

A common person's faith is that a computer can do anything. It is far from truth. In realism computer can carry out only definite predefined instructions. The formal illustration o

Comp. sci algorithms, 1. develop an algorithm which reads two decimal numbe...

1. develop an algorithm which reads two decimal numbers x and y and determines and prints out wether x>y or y>x. the input values, x and y, are whole number > or equal to 0, which

Calculate address of an element in an array., Q. Explain the technique to c...

Q. Explain the technique to calculate the address of an element in an array. A  25 × 4  matrix array DATA is stored in memory in 'row-major order'. If base  address is 200 and

Circular queue, explain implementation of circular queue insert,delete oper...

explain implementation of circular queue insert,delete operations

Explain memory allocation strategies, Memory Allocation Strategies If i...

Memory Allocation Strategies If it is not desirable to move blocks of due storage from one area of memory to another, it must be possible to relocate memory blocks that have be

Explain how the shuttle sort algorithm works, Question 1 Explain how th...

Question 1 Explain how the shuttle sort algorithm works by making use of the following list of integers:11, 4, 2, 8, 5, 33, 7, 3, 1, 6. Show all the steps. Question 2

Describe commonly used asymptotic notations, Q.1 Compare two functions n 2 ...

Q.1 Compare two functions n 2 and 2 n for various values of n. Determine when second becomes larger than first. Q.2 Why do we use asymptotic notation in the study of algorit

Splaying steps - splay trees, Readjusting for tree modification calls for r...

Readjusting for tree modification calls for rotations in the binary search tree. Single rotations are possible in the left or right direction for moving a node to the root position

Insertion sort, It is a naturally occurring sorting method exemplified thro...

It is a naturally occurring sorting method exemplified through a card player arranging the cards dealt to him. He picks up the cards like they are dealt & added them into the neede

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd