Several operations on a aa-tree, Data Structure & Algorithms

Assignment Help:

The following are several operations on a AA-tree:

1. Searching: Searching is done using an algorithm which is similar to the search algorithm of a binary search tree.

2. Insertion: The insertion procedure always starts from the bottom level. However, whereas performing this function, either of the two troubles can occur:

    (a) Two consecutive horizontal links (right side)

    (b) Left horizontal link.

Whereas studying the properties of AA-tree, we said that conditions (a) and (b) must not be satisfied. Therefore, in order to eliminate conditions (a) and (b), we employ two new functions namely skew ( ) & split( ) depend on the rotations of the node, so that all the properties of AA-trees are retained.

The condition that (a) two consecutive horizontal links in an AA-tree can be eliminated by a left rotation by split( ) while the condition (b) can be eliminated by right rotations through function show( ). Either of these functions can eliminate this condition, but can also arise the other condition. Let us show it with an example. Imagine, in the AA-tree of Figure, we have to insert node 50.

According to the condition, the node 50 will be added at the bottom level in such a way that it satisfies Binary Search tree property also

Now, we have to be aware as to how this left rotation is performed. Keep in mind, that rotation is introduced in Red-black tree and these rotations (left and right) are the similar as we performed in a Red-Black tree. Now, again split ( ) has removed its condition although has created skew conditions. Thus, skew ( ) function will now be called again and again till a complete AA-tree with a no false condition is obtained.

A skew problem arises since node 90 is two-level lower than its parent 75 and thus in order to avoid this, we call skew / split function again.

Therefore, introducing horizontal left links, to avoid left horizontal links and making them right horizontal links, we make three calls to skew and then two calls to split to remove consecutive horizontal links

A Treap is another kind of Binary Search tree and has one property distinct from other types of trees. Each of the nodes in the tree stores an item, a left & right pointer and a priority that is randomly assigned while the node is created. Whereas assigning the priority, it is essential that the heap order priority has to be maintained: node's priority must be at least as large as its parent's. A treap is both binary search tree with respect to node elements and a heap with respect to node priorities.


Related Discussions:- Several operations on a aa-tree

Usage of linked lists for polynomial manipulation, Q. Establish the usage o...

Q. Establish the usage of linked lists for polynomial manipulation.                                       Ans. Usag e of Linked List for Polynomial Manipulation. Link

Graph connectivity, A connected graph is a graph wherein path exists among ...

A connected graph is a graph wherein path exists among every pair of vertices. A strongly connected graph is a directed graph wherein every pair of distinct vertices is connecte

Complexity of algorithm, The simplest implementation of the Dijkstra's algo...

The simplest implementation of the Dijkstra's algorithm stores vertices of set Q into an ordinary linked list or array, and operation Extract-Min(Q) is just a linear search through

System defined data types, System defined data types:- These are data t...

System defined data types:- These are data types that have been defined by the compiler of any program. The C language contains 4 basic data types:- Int, float,  char and doubl

What are the languages which support assertions, What are the languages whi...

What are the languages which support assertions Languages which support assertions often provide different levels of support. For instance, Java has an assert statement which t

Design a binary tree, (a) Suppose that t is a binary tree of integers (that...

(a) Suppose that t is a binary tree of integers (that is, an object of type BinTree of Int.) in the state shown in Figure 3.   Give the vectors returned by each of the f

Define binary tree, Define Binary Tree  A binary tree T is explained as...

Define Binary Tree  A binary tree T is explained as a finite set of nodes that is either empty or having of root and two disjoint binary trees TL, and TR known as, respectively

Graph with n vertices will absolutely have a parallel edge, A graph with n ...

A graph with n vertices will absolutely have a parallel edge or self loop if the total number of edges is greater than n-1

Explain thread, Thread By changing the NULL lines in a binary tree to ...

Thread By changing the NULL lines in a binary tree to special links known as threads, it is possible to perform traversal, insertion and deletion without using either a stack

Differentiate between nonpersistent and 1-persistent, Differentiate between...

Differentiate between Nonpersistent and 1-persistent Nonpersistent: If the medium is idle, transmit; if the medium is busy, wait an amount of time drawn from a probability dist

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd