Several operations on a aa-tree, Data Structure & Algorithms

Assignment Help:

The following are several operations on a AA-tree:

1. Searching: Searching is done using an algorithm which is similar to the search algorithm of a binary search tree.

2. Insertion: The insertion procedure always starts from the bottom level. However, whereas performing this function, either of the two troubles can occur:

    (a) Two consecutive horizontal links (right side)

    (b) Left horizontal link.

Whereas studying the properties of AA-tree, we said that conditions (a) and (b) must not be satisfied. Therefore, in order to eliminate conditions (a) and (b), we employ two new functions namely skew ( ) & split( ) depend on the rotations of the node, so that all the properties of AA-trees are retained.

The condition that (a) two consecutive horizontal links in an AA-tree can be eliminated by a left rotation by split( ) while the condition (b) can be eliminated by right rotations through function show( ). Either of these functions can eliminate this condition, but can also arise the other condition. Let us show it with an example. Imagine, in the AA-tree of Figure, we have to insert node 50.

According to the condition, the node 50 will be added at the bottom level in such a way that it satisfies Binary Search tree property also

Now, we have to be aware as to how this left rotation is performed. Keep in mind, that rotation is introduced in Red-black tree and these rotations (left and right) are the similar as we performed in a Red-Black tree. Now, again split ( ) has removed its condition although has created skew conditions. Thus, skew ( ) function will now be called again and again till a complete AA-tree with a no false condition is obtained.

A skew problem arises since node 90 is two-level lower than its parent 75 and thus in order to avoid this, we call skew / split function again.

Therefore, introducing horizontal left links, to avoid left horizontal links and making them right horizontal links, we make three calls to skew and then two calls to split to remove consecutive horizontal links

A Treap is another kind of Binary Search tree and has one property distinct from other types of trees. Each of the nodes in the tree stores an item, a left & right pointer and a priority that is randomly assigned while the node is created. Whereas assigning the priority, it is essential that the heap order priority has to be maintained: node's priority must be at least as large as its parent's. A treap is both binary search tree with respect to node elements and a heap with respect to node priorities.


Related Discussions:- Several operations on a aa-tree

ALGORITHM AND TRACING, WRITE AN ALGORITHM TO CONVERT PARENTHIZED INFIX TO P...

WRITE AN ALGORITHM TO CONVERT PARENTHIZED INFIX TO POSTFIX FORM ALSO TRACE ALG ON ((A+B)*C-(D-E)$F+G)

Dijkstras algorithm, Djikstra's algorithm (named after it is discovered by ...

Djikstra's algorithm (named after it is discovered by Dutch computer scientist E.W. Dijkstra) resolves the problem of finding the shortest path through a point in a graph (the sour

Multilist file organisation, what is multilist length file organisation? ex...

what is multilist length file organisation? explain with an example

Standard ways of traversing a graph, Q. Which are the two standard ways of ...

Q. Which are the two standard ways of traversing a graph?  Explain them with an example of each.  Ans:   T he two ways of traversing a graph are written below

Explain the linked list implementation of stack, Question 1 Explain the fo...

Question 1 Explain the following? Arrays Stack Trees Question 2 Explain the Linked list implementation of stack Question 3 What is a binary tree? Expla

A full binary tree with 2n+1 nodes, A full binary tree with 2n+1 nodes have...

A full binary tree with 2n+1 nodes have n non-leaf nodes

Example of binary search, Let us assume a file of 5 records that means n = ...

Let us assume a file of 5 records that means n = 5 And k is a sorted array of keys of those 5 records. Let key = 55, low = 0, high = 4 Iteration 1: mid = (0+4)/2 = 2

SORTING ALGORIthm, the deference between insertion,selection and bubble sor...

the deference between insertion,selection and bubble sort

Applications of binary trees, In computer programming, Trees are utilized ...

In computer programming, Trees are utilized enormously. These can be utilized for developing database search times (binary search trees, AVL trees, 2-3 trees, red-black trees), Gam

C, padovan string

padovan string

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd