Several operations on a aa-tree, Data Structure & Algorithms

Assignment Help:

The following are several operations on a AA-tree:

1. Searching: Searching is done using an algorithm which is similar to the search algorithm of a binary search tree.

2. Insertion: The insertion procedure always starts from the bottom level. However, whereas performing this function, either of the two troubles can occur:

    (a) Two consecutive horizontal links (right side)

    (b) Left horizontal link.

Whereas studying the properties of AA-tree, we said that conditions (a) and (b) must not be satisfied. Therefore, in order to eliminate conditions (a) and (b), we employ two new functions namely skew ( ) & split( ) depend on the rotations of the node, so that all the properties of AA-trees are retained.

The condition that (a) two consecutive horizontal links in an AA-tree can be eliminated by a left rotation by split( ) while the condition (b) can be eliminated by right rotations through function show( ). Either of these functions can eliminate this condition, but can also arise the other condition. Let us show it with an example. Imagine, in the AA-tree of Figure, we have to insert node 50.

According to the condition, the node 50 will be added at the bottom level in such a way that it satisfies Binary Search tree property also

Now, we have to be aware as to how this left rotation is performed. Keep in mind, that rotation is introduced in Red-black tree and these rotations (left and right) are the similar as we performed in a Red-Black tree. Now, again split ( ) has removed its condition although has created skew conditions. Thus, skew ( ) function will now be called again and again till a complete AA-tree with a no false condition is obtained.

A skew problem arises since node 90 is two-level lower than its parent 75 and thus in order to avoid this, we call skew / split function again.

Therefore, introducing horizontal left links, to avoid left horizontal links and making them right horizontal links, we make three calls to skew and then two calls to split to remove consecutive horizontal links

A Treap is another kind of Binary Search tree and has one property distinct from other types of trees. Each of the nodes in the tree stores an item, a left & right pointer and a priority that is randomly assigned while the node is created. Whereas assigning the priority, it is essential that the heap order priority has to be maintained: node's priority must be at least as large as its parent's. A treap is both binary search tree with respect to node elements and a heap with respect to node priorities.


Related Discussions:- Several operations on a aa-tree

Sorting algorithms, Sorting is significant application activity. Several so...

Sorting is significant application activity. Several sorting algorithms are obtainable. But, each is efficient for a specific situation or a specific kind of data. The choice of a

State in detail about the integer, State in detail about the Integer ...

State in detail about the Integer Carrier set of the Integer ADT is the set {..., -2, -1, 0, 1, 2, ...}, and  operations on these values are addition, multiplication, subtrac

Preliminaries, Think of a program you have used that is unacceptably slow. ...

Think of a program you have used that is unacceptably slow. Identify the specific operations that make the program slow. Identify other basic operations that the program performs q

Algorithm of binary search, Step 1: Declare array 'k' of size 'n' i.e. k(n)...

Step 1: Declare array 'k' of size 'n' i.e. k(n) is an array which stores all the keys of a file containing 'n' records Step 2: i←0 Step 3: low←0, high←n-1 Step 4: while (l

Explain best - fit method, Best - Fit Method: - This method obtains the sma...

Best - Fit Method: - This method obtains the smallest free block whose  size is greater than or equal to get such a block by traversing the whole free list follows.

How do you rotate a binary tree, How do you rotate a Binary Tree?  Rot...

How do you rotate a Binary Tree?  Rotations in the tree: If after inserting a node in a Binary search tree, the balancing factor (height of left subtree - height of right

Implementation of stack using linked lists, In the last subsection, we have...

In the last subsection, we have implemented a stack by using an array. While a stack is implemented by using arrays, it suffers from the basic restriction of an array - i.e., its s

Properties of a red-black tree, Any binary search tree must contain followi...

Any binary search tree must contain following properties to be called as a red-black tree. 1. Each node of a tree should be either red or black. 2. The root node is always bl

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd