Several operations on a aa-tree, Data Structure & Algorithms

Assignment Help:

The following are several operations on a AA-tree:

1. Searching: Searching is done using an algorithm which is similar to the search algorithm of a binary search tree.

2. Insertion: The insertion procedure always starts from the bottom level. However, whereas performing this function, either of the two troubles can occur:

    (a) Two consecutive horizontal links (right side)

    (b) Left horizontal link.

Whereas studying the properties of AA-tree, we said that conditions (a) and (b) must not be satisfied. Therefore, in order to eliminate conditions (a) and (b), we employ two new functions namely skew ( ) & split( ) depend on the rotations of the node, so that all the properties of AA-trees are retained.

The condition that (a) two consecutive horizontal links in an AA-tree can be eliminated by a left rotation by split( ) while the condition (b) can be eliminated by right rotations through function show( ). Either of these functions can eliminate this condition, but can also arise the other condition. Let us show it with an example. Imagine, in the AA-tree of Figure, we have to insert node 50.

According to the condition, the node 50 will be added at the bottom level in such a way that it satisfies Binary Search tree property also

Now, we have to be aware as to how this left rotation is performed. Keep in mind, that rotation is introduced in Red-black tree and these rotations (left and right) are the similar as we performed in a Red-Black tree. Now, again split ( ) has removed its condition although has created skew conditions. Thus, skew ( ) function will now be called again and again till a complete AA-tree with a no false condition is obtained.

A skew problem arises since node 90 is two-level lower than its parent 75 and thus in order to avoid this, we call skew / split function again.

Therefore, introducing horizontal left links, to avoid left horizontal links and making them right horizontal links, we make three calls to skew and then two calls to split to remove consecutive horizontal links

A Treap is another kind of Binary Search tree and has one property distinct from other types of trees. Each of the nodes in the tree stores an item, a left & right pointer and a priority that is randomly assigned while the node is created. Whereas assigning the priority, it is essential that the heap order priority has to be maintained: node's priority must be at least as large as its parent's. A treap is both binary search tree with respect to node elements and a heap with respect to node priorities.


Related Discussions:- Several operations on a aa-tree

Explain the term heuristics searching, (a) Discuss the role played by Busin...

(a) Discuss the role played by Business Intelligence Systems in giving companies strategic advantage. (b) Explain the term heuristics searching . (c) With the use of an appr

All pairs shortest paths, N = number of rows of the graph D[i[j] = C[i][...

N = number of rows of the graph D[i[j] = C[i][j] For k from 1 to n Do for i = 1 to n Do for j = 1 to n D[i[j]= minimum( d ij (k-1) ,d ik (k-1) +d kj (k-1)

Use of asymptotic notation in the study of algorithm, Q. What is the need o...

Q. What is the need of using asymptotic notation in the study of algorithm? Describe the commonly used asymptotic notations and also give their significance.

C++, #What is the pointer

#What is the pointer

Logic circuits, the voltage wave forms are applied at the inputs of an EX-O...

the voltage wave forms are applied at the inputs of an EX-OR gate. determine the output wave form

Construction of a binary tree , Q. Construct a binary tree whose nodes in i...

Q. Construct a binary tree whose nodes in inorder and preorder are written as follows: Inorder : 10, 15, 17, 18, 20, 25, 30, 35, 38, 40, 50 Preorder: 20, 15, 10

Calculates partial sum of an integer, Now, consider a function that calcula...

Now, consider a function that calculates partial sum of an integer n. int psum(int n) { int i, partial_sum; partial_sum = 0;                                           /* L

What are the different ways of representing a graph, What are the different...

What are the different ways of representing a graph? The different ways of representing a graph is: Adjacency list representation: This representation of graph having of an

Prefix and Postfix Expressions, Q.   Draw the expression tree of the infix ...

Q.   Draw the expression tree of the infix expression written below and then  convert it intoPrefix and Postfix expressions. ((a + b) + c * (d + e) + f )* (g + h )

The smallest element of an array''s index, The smallest element of an array...

The smallest element of an array's index is called its Lower bound.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd