Series solutions to differential equations, Mathematics

Assignment Help:

Before searching at series solutions to a differential equation we will initially require to do a cursory review of power series. So, a power series is a series in the form,

1570_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS.png ........................(1)

Here, x0 and an are numbers. We can notice from that as a power series is a function of x. The function notation is not all the time contained, but sometimes this is so we place this in the definition above.

Before proceeding along with our review we must probably first recall just what series actually are. Recall that series are actually just summations. Then one method to write our power series is,

2147_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS1.png

= a0 + a1 (x - x0) + a2 (x - x0)2 + a3 (x - x0)3+  ..............            (2)

Notice finely that if we required to for some purpose we could all the time write the power series as,

1699_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS2.png

= a0 + a1 (x - x0) + a2 (x - x0)2 + a3 (x - x0)3+..............             

581_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS3.png

All which we're doing now there is noticing that if we avoid the first term (consequent to n = 0) the remains is just a series which starts at n = 1. While we do this we say which we've stripped out the n = 0, or first term. We don't require stopping at the first term either. If we strip out the initially three terms we'll find,

1620_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS4.png

There are times while we'll need to do this so ensure that you can do it.

Here, as power series are functions of x and we know that not each series will actually exist, this then makes sense to ask if a power series will exist for all x. This question is answered by searching at the convergence of the power series. We say as a power series converges for x = c whether the series, converges.

1155_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS5.png

Recall here that series which will converge if the restrict of partial sums,

1819_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS6.png

exists and it is finite.  Conversely, a power series will converge for x=c if

1153_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS7.png

above is a finite number.

Remember that a power series will all the time converge if x = x0. During this case the power series will become ∞;

217_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS8.png

With this we here know that power series are guaranteed to exist for in any case one value of x. We have the subsequent fact regarding to the convergence of a power series.


Related Discussions:- Series solutions to differential equations

Step functions, Before going to solving differential equations we must see ...

Before going to solving differential equations we must see one more function. Without Laplace transforms this would be much more hard to solve differential equations which involve

Rationalize the denominator, Rationalize the denominator for following.  Su...

Rationalize the denominator for following.  Suppose that x is positive. Solution We'll have to start this one off along with first using the third property of radica

Find Equation of the circle, The line 4x-3y=-12 is tangent at the point (-3...

The line 4x-3y=-12 is tangent at the point (-3,0) and the line 3x+4y=16 is tangent at the point (4,1). find the equation of the circle. solution) well you could first find the ra

Financial Math, can you help me with financial math??

can you help me with financial math??

Implementation of kruskal algorithm, You are required to implement Kruskal'...

You are required to implement Kruskal's algorithm for finding a Minimum Spanning Tree of Graph.  This will require implementing : A Graph Data Type (including a display meth

Sketch the direction field for the differential equation, Sketch the direct...

Sketch the direction field for the subsequent differential equation. Draw the set of integral curves for this differential equation. Find out how the solutions behave as t → ∞ and

Advanced functions, writ the equation that describes the motion of a point ...

writ the equation that describes the motion of a point on the wheel that has a center of 4m off the ground, has radius of 15 cm, makes a full rotation every 10 seconds and starts a

Determine y' for xy = 1 by implicit differentiation, Determine y′ for xy = ...

Determine y′ for xy = 1 . Solution : There are in fact two solution methods for this problem. Solution 1: It is the simple way of doing the problem.  Just solve for y to

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd