Series solutions to differential equations, Mathematics

Assignment Help:

Before searching at series solutions to a differential equation we will initially require to do a cursory review of power series. So, a power series is a series in the form,

1570_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS.png ........................(1)

Here, x0 and an are numbers. We can notice from that as a power series is a function of x. The function notation is not all the time contained, but sometimes this is so we place this in the definition above.

Before proceeding along with our review we must probably first recall just what series actually are. Recall that series are actually just summations. Then one method to write our power series is,

2147_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS1.png

= a0 + a1 (x - x0) + a2 (x - x0)2 + a3 (x - x0)3+  ..............            (2)

Notice finely that if we required to for some purpose we could all the time write the power series as,

1699_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS2.png

= a0 + a1 (x - x0) + a2 (x - x0)2 + a3 (x - x0)3+..............             

581_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS3.png

All which we're doing now there is noticing that if we avoid the first term (consequent to n = 0) the remains is just a series which starts at n = 1. While we do this we say which we've stripped out the n = 0, or first term. We don't require stopping at the first term either. If we strip out the initially three terms we'll find,

1620_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS4.png

There are times while we'll need to do this so ensure that you can do it.

Here, as power series are functions of x and we know that not each series will actually exist, this then makes sense to ask if a power series will exist for all x. This question is answered by searching at the convergence of the power series. We say as a power series converges for x = c whether the series, converges.

1155_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS5.png

Recall here that series which will converge if the restrict of partial sums,

1819_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS6.png

exists and it is finite.  Conversely, a power series will converge for x=c if

1153_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS7.png

above is a finite number.

Remember that a power series will all the time converge if x = x0. During this case the power series will become ∞;

217_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS8.png

With this we here know that power series are guaranteed to exist for in any case one value of x. We have the subsequent fact regarding to the convergence of a power series.


Related Discussions:- Series solutions to differential equations

The equation of the tangent, Consider the function f(x) = 2x 2 + 1. Find ...

Consider the function f(x) = 2x 2 + 1. Find the equation of the tangent to the graph of f(x) at x = 2. [NOTE: when calculating f'(2), use first principles.

Objectives of addition and subtraction, Objectives After going throu...

Objectives After going through this unit, you should be able to 1. explain the processes involved ih addition and subtraction; 2. plan and execute activities that woul

Spherical coordinates - three dimensional space, Spherical Coordinates - Th...

Spherical Coordinates - Three Dimensional Space In this part we will introduce spherical coordinates. Spherical coordinates which can take a little getting employed to.  It's

Design a game strategy involves process of learning maths, Doing these sums...

Doing these sums initially in this way helps children see why they carry over numbers to the next column. You may like to devise some related activities now. , EI) Give activ

ADDING AND SUBTRACTING EQUATION, GUESS THE NUMBER THAT WHEN YOU SUBTRACT 6 ...

GUESS THE NUMBER THAT WHEN YOU SUBTRACT 6 AND THEN SUBTRACT 0 IS-14

Simultaneous linear equations (graphical method), Steps in solving graphica...

Steps in solving graphical method of simultaneous linear equations

integration: if f(x)+f(x+1/2) =1 find limit 0 to 2, f(x)+f(x+1/2) =1 f(x...

f(x)+f(x+1/2) =1 f(x)=1-f(x+1/2) 0∫2f(x)dx=0∫21-f(x+1/2)dx 0∫2f(x)dx=2-0∫2f(x+1/2)dx take (x+1/2)=v dx=dv 0∫2f(v)dv=2-0∫2f(v)dv 2(0∫2f(v)dv)=2 0∫2f(v)dv=1 0∫2f(x)dx=1

Net Present Value, A business has the opportunity to expand by purchasing ...

A business has the opportunity to expand by purchasing a machine at a cost of £80,000. The machine has an estimated life of 5 years and is projected to generate a cashflow of £20,0

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd