Series solutions to differential equations, Mathematics

Assignment Help:

Before searching at series solutions to a differential equation we will initially require to do a cursory review of power series. So, a power series is a series in the form,

1570_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS.png ........................(1)

Here, x0 and an are numbers. We can notice from that as a power series is a function of x. The function notation is not all the time contained, but sometimes this is so we place this in the definition above.

Before proceeding along with our review we must probably first recall just what series actually are. Recall that series are actually just summations. Then one method to write our power series is,

2147_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS1.png

= a0 + a1 (x - x0) + a2 (x - x0)2 + a3 (x - x0)3+  ..............            (2)

Notice finely that if we required to for some purpose we could all the time write the power series as,

1699_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS2.png

= a0 + a1 (x - x0) + a2 (x - x0)2 + a3 (x - x0)3+..............             

581_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS3.png

All which we're doing now there is noticing that if we avoid the first term (consequent to n = 0) the remains is just a series which starts at n = 1. While we do this we say which we've stripped out the n = 0, or first term. We don't require stopping at the first term either. If we strip out the initially three terms we'll find,

1620_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS4.png

There are times while we'll need to do this so ensure that you can do it.

Here, as power series are functions of x and we know that not each series will actually exist, this then makes sense to ask if a power series will exist for all x. This question is answered by searching at the convergence of the power series. We say as a power series converges for x = c whether the series, converges.

1155_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS5.png

Recall here that series which will converge if the restrict of partial sums,

1819_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS6.png

exists and it is finite.  Conversely, a power series will converge for x=c if

1153_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS7.png

above is a finite number.

Remember that a power series will all the time converge if x = x0. During this case the power series will become ∞;

217_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS8.png

With this we here know that power series are guaranteed to exist for in any case one value of x. We have the subsequent fact regarding to the convergence of a power series.


Related Discussions:- Series solutions to differential equations

Greatest common factor, x 4 - 25 There is no greatest common factor her...

x 4 - 25 There is no greatest common factor here.  Though, notice that it is the difference of two perfect squares. x 4 - 25 = ( x 2 ) 2   - (5) 2 Thus, we can employ

Explain peano''s axioms with suitable example, Question 1 Explain Peano's ...

Question 1 Explain Peano's Axioms with suitable example Question 2 Let A = B = C= R, and let f: A→ B, g: B→ C be defined by f(a) = a+1 and g(b) = b 2 +1. Find a) (f °g

General solution to a differential equation, The general solution to a diff...

The general solution to a differential equation is the most common form which the solution can take and does not take any initial conditions in account. Illustration 5: y(t) =

Piecewise, x=±4, if -2 = y =0 x=±2, if -2 = y = 0

x=±4, if -2 = y =0 x=±2, if -2 = y = 0

Finding the equation of a line, Finding the Equation of a line, Given a Slo...

Finding the Equation of a line, Given a Slope and a Point ? Find the equation of a line with slope m = 2, which passes through the point (-1, -3). Solution: Use the po

Explain the common forms of linear equations, Explain the Common Forms of L...

Explain the Common Forms of Linear Equations ? An equation whose graph is a line is called a linear equation. Here are listed some special forms of linear equations. Why should

Standardization of variables, Standardization of Variables - Before we...

Standardization of Variables - Before we use the general distribution curve to determine probabilities of the continuous variables, we require standardizing the original units

value of integration , what is the value of integration limit n-> infinity...

what is the value of integration limit n-> infinity [n!/n to the power n]to the power 1/n Solution)  limit n-->inf.    [1 + (n!-n^n)/n^n]^1/n = e^ limit n-->inf.    {(n!-n^n)

Trigonmetry, How do I find a bearring using trig?

How do I find a bearring using trig?

Technique of teching, What is a review technique? What are its advantages a...

What is a review technique? What are its advantages and disadvantages?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd