Series solutions to differential equations, Mathematics

Assignment Help:

Before searching at series solutions to a differential equation we will initially require to do a cursory review of power series. So, a power series is a series in the form,

1570_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS.png ........................(1)

Here, x0 and an are numbers. We can notice from that as a power series is a function of x. The function notation is not all the time contained, but sometimes this is so we place this in the definition above.

Before proceeding along with our review we must probably first recall just what series actually are. Recall that series are actually just summations. Then one method to write our power series is,

2147_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS1.png

= a0 + a1 (x - x0) + a2 (x - x0)2 + a3 (x - x0)3+  ..............            (2)

Notice finely that if we required to for some purpose we could all the time write the power series as,

1699_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS2.png

= a0 + a1 (x - x0) + a2 (x - x0)2 + a3 (x - x0)3+..............             

581_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS3.png

All which we're doing now there is noticing that if we avoid the first term (consequent to n = 0) the remains is just a series which starts at n = 1. While we do this we say which we've stripped out the n = 0, or first term. We don't require stopping at the first term either. If we strip out the initially three terms we'll find,

1620_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS4.png

There are times while we'll need to do this so ensure that you can do it.

Here, as power series are functions of x and we know that not each series will actually exist, this then makes sense to ask if a power series will exist for all x. This question is answered by searching at the convergence of the power series. We say as a power series converges for x = c whether the series, converges.

1155_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS5.png

Recall here that series which will converge if the restrict of partial sums,

1819_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS6.png

exists and it is finite.  Conversely, a power series will converge for x=c if

1153_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS7.png

above is a finite number.

Remember that a power series will all the time converge if x = x0. During this case the power series will become ∞;

217_SERIES SOLUTIONS TO DIFFERENTIAL EQUATIONS8.png

With this we here know that power series are guaranteed to exist for in any case one value of x. We have the subsequent fact regarding to the convergence of a power series.


Related Discussions:- Series solutions to differential equations

Prove the equality of axiom choice, (1) Prove that Zorn's lemma is equivale...

(1) Prove that Zorn's lemma is equivalent to axiom of choice. (2) Use Zorn's Lemma to prove the existence of E.

Which of the following could be the dimensions the courty x, Katie's school...

Katie's school has a rectangular courtyard whose area can be expressed as 3x 2 - 7x + 2. Which of the following could be the dimensions of the courtyard in terms of x? Since t

Application of statistics-quality control, Quality Control Normally th...

Quality Control Normally there is a quality control departments in every industry which is charged along with the responsibility of ensuring about the products made do meet th

Simple harmonic motion, prove that the composition of two simple harmonic o...

prove that the composition of two simple harmonic of the same period and in the same straight line is also a simple harmonic motion of the same period.

Draw tangent graph y = tan ( x ), Graph y = tan ( x ). Solution In...

Graph y = tan ( x ). Solution In the case of tangent we need to be careful while plugging x's in since tangent doesn't present wherever cosine is zero (remember that tan x

Geometry, geometry fbw = 128 saf= 104 what is rfd

geometry fbw = 128 saf= 104 what is rfd

Solve following 4e1+3 x - 9e5-2 x = 0 logarithms, Solve following 4e 1+3 x...

Solve following 4e 1+3 x - 9e 5-2 x  = 0 . Solution Here the first step is to get one exponential on every side & then we'll divide both sides by one of them (that doesn'

Evaluate the rational exponents, Evaluate each of the following.  (a) 2...

Evaluate each of the following.  (a) 25 1/2  (b) 32 1/5 Solution  (a) 25 1/2 Thus, here is what we are asking in this problem.                             2

Calculate moving average, Calculate Moving Average The table given bel...

Calculate Moving Average The table given below represents company sales; calculate 3 and 6 monthly moving averages, for data Months Sales

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd