Series solutions to differential equation, Mathematics

Assignment Help:

Before we find into finding series solutions to differential equations we require determining when we can get series solutions to differential equations. Therefore, let's start with the differential equation,

 p (x) y′′ + q (x) y′ + r (x )y = 0                   (1)

Now there we really do mean nonconstant coefficients. For this point we've only dealt along with constant coefficients. Though, with series solutions we can now contain nonconstant coefficient differential equations. As well as, in order to make the problems some nicer we will be dealing only along with polynomial coefficients.

Here, we say that x=x0 is an ordinary point if given both,

q(x)/p(x)                      and                  r(x)/p(x)

Both are analytic at x=x0. It is to say that such two quantities have Taylor series around x=x0. Our aim is only dealing with coefficients which are polynomials thus this will be equivalent to saying as,

p(x0) ≠ 0

If a point is not an ordinary point so we call this a singular point.

The fundamental idea to finding a series solution to a differential equation is to suppose that we can write the solution like a power series in the form,

1856_Series Solutions to Differential Equation9.png..................(2)

And then try to find out what the an's require to be. We will only be capable to do this if the point x=x0, is an ordinary point. We will generally say as (2) is a series solution around x=x0.

Let's begin with a very fundamental example of this. Actually this will be so fundamental that we will contain constant coefficients. It will permit us to check that we find the exact solution.


Related Discussions:- Series solutions to differential equation

Show that the height of the opposite house, From a window x meters hi...

From a window x meters high above the ground in a street, the angles of elevation and depression of the top and the foot of the other house on the opposite side of the street  are

One of these food groups, In a collection of 30 dissimilar birds, 15 eat wo...

In a collection of 30 dissimilar birds, 15 eat worms, 18 eat fruit, and 12 eat seeds. Accurately 8 eat worms and seeds, 8 eat worms and fruit, 7 eat fruit and seeds, and 4 eat each

Question, Hi I have a maths question related to construction as its a cons...

Hi I have a maths question related to construction as its a construction management course...i could send some example sheets too...could it be done?

Pde, i find paper that has sam my homework which i need it, in you website...

i find paper that has sam my homework which i need it, in you website , is that mean you have already the solution of that ?

Without a calculator give the exact value, without a calculator give the ex...

without a calculator give the exact value of each of the following logarithms. (a) (b) log1000 (c) log 16 16 (d) log 23 1  (e)  Solution (b) log10

Example of addition of signed numbers, Example of addition of Signed Number...

Example of addition of Signed Numbers: Example: (-2) + 3 + 4 = 0 - 2 + 3 + 4 Solution: Thus: (-2) + 3 + 4 = 5  Example: 10 + (-5) + 8 + (-7)

Ratio lanquage, Alexis needs to paint the four exterior walls of a large re...

Alexis needs to paint the four exterior walls of a large rectangular barn. the length of the barn is 80 feet the width is 50 feet and the height is 30 feet. The pain costs 28 dolla

Applying quadratics math question, A boat tour company charges $11 for a ha...

A boat tour company charges $11 for a harbour tour and averages 450 passengers on Saturdays. Over the past few months, the company has been experimenting with the price of a tour a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd