Series solutions to differential equation, Mathematics

Assignment Help:

Before we find into finding series solutions to differential equations we require determining when we can get series solutions to differential equations. Therefore, let's start with the differential equation,

 p (x) y′′ + q (x) y′ + r (x )y = 0                   (1)

Now there we really do mean nonconstant coefficients. For this point we've only dealt along with constant coefficients. Though, with series solutions we can now contain nonconstant coefficient differential equations. As well as, in order to make the problems some nicer we will be dealing only along with polynomial coefficients.

Here, we say that x=x0 is an ordinary point if given both,

q(x)/p(x)                      and                  r(x)/p(x)

Both are analytic at x=x0. It is to say that such two quantities have Taylor series around x=x0. Our aim is only dealing with coefficients which are polynomials thus this will be equivalent to saying as,

p(x0) ≠ 0

If a point is not an ordinary point so we call this a singular point.

The fundamental idea to finding a series solution to a differential equation is to suppose that we can write the solution like a power series in the form,

1856_Series Solutions to Differential Equation9.png..................(2)

And then try to find out what the an's require to be. We will only be capable to do this if the point x=x0, is an ordinary point. We will generally say as (2) is a series solution around x=x0.

Let's begin with a very fundamental example of this. Actually this will be so fundamental that we will contain constant coefficients. It will permit us to check that we find the exact solution.


Related Discussions:- Series solutions to differential equation

Find out the probability, a)  A husband and wife appear in an interview for...

a)  A husband and wife appear in an interview for two vacancies in the same post.  The probability of husband's selection is 1/7 and that of wife's selection is 1/5.  What is th

Market orientation, what is market orientation? what is the importance of ...

what is market orientation? what is the importance of market orientation?what are its implementation?

Determine the quotient and remainder , Let a = 5200 and b = 1320. (a) If...

Let a = 5200 and b = 1320. (a) If a is the dividend and b is the divisor, determine the quotient q and remainder r. (b) Use the Euclidean Algorithm to find gcd(a; b). (c)

Addition rule - probability rule, The Addition Rule: Mutually Exclusive Eve...

The Addition Rule: Mutually Exclusive Events P(A or B or C) = P(A) + P(B) + P(C) This can be represented by the Venn diagram as follows:

what are the coordinates of the vertex , Use the graph of y = x2 - 6x  to ...

Use the graph of y = x2 - 6x  to answer the following: a)         Without solving the equation (or factoring), determine the solutions to the equation  x 2 - 6x = 0  usi

the demand forecast, The King Company is producing two types of products: ...

The King Company is producing two types of products: A and B. Both products are produced on the similar machining operation. The machines operate on two 8-hour shifts, 5 days per w

Substitute 6 for r in the formula a = r^2 and solve for a, Find the area of...

Find the area of a circle along with a radius of 6 inches. The formula for the area of a circle is A = πr 2 . Use 3.14 for π. Substitute  6 for r in the formula A = πr 2 and solve

#change of ratio, #in a picnic the ratio of boys to girls is 3:4. when 6 bo...

#in a picnic the ratio of boys to girls is 3:4. when 6 boys joined the group the ratio became even. how many boys were there before? how many children were there before? how many b

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd