Series solutions to differential equation, Mathematics

Assignment Help:

Before we find into finding series solutions to differential equations we require determining when we can get series solutions to differential equations. Therefore, let's start with the differential equation,

 p (x) y′′ + q (x) y′ + r (x )y = 0                   (1)

Now there we really do mean nonconstant coefficients. For this point we've only dealt along with constant coefficients. Though, with series solutions we can now contain nonconstant coefficient differential equations. As well as, in order to make the problems some nicer we will be dealing only along with polynomial coefficients.

Here, we say that x=x0 is an ordinary point if given both,

q(x)/p(x)                      and                  r(x)/p(x)

Both are analytic at x=x0. It is to say that such two quantities have Taylor series around x=x0. Our aim is only dealing with coefficients which are polynomials thus this will be equivalent to saying as,

p(x0) ≠ 0

If a point is not an ordinary point so we call this a singular point.

The fundamental idea to finding a series solution to a differential equation is to suppose that we can write the solution like a power series in the form,

1856_Series Solutions to Differential Equation9.png..................(2)

And then try to find out what the an's require to be. We will only be capable to do this if the point x=x0, is an ordinary point. We will generally say as (2) is a series solution around x=x0.

Let's begin with a very fundamental example of this. Actually this will be so fundamental that we will contain constant coefficients. It will permit us to check that we find the exact solution.


Related Discussions:- Series solutions to differential equation

Five shirts and one tie cost $20 what price of one shirt, Three shirts and ...

Three shirts and five ties cost $23. Five shirts and one tie cost $20. What is the price of one shirt? Let x = the cost of one shirt. Let y = the cost of one tie. The ?rst part

Math, 1+3+5+7+9+11+13+15+17+19

1+3+5+7+9+11+13+15+17+19

Find the value of given equations in polynomial , If α & ß are the zeroes ...

If α & ß are the zeroes of the polynomial 2x 2 - 4x + 5, then find the value of a.α 2 + ß 2   b. 1/ α + 1/ ß  c. (α - ß) 2 d. 1/α 2 + 1/ß 2    e.  α 3 + ß 3 (Ans:-1, 4/5 ,-6,

Assumptions and application of t distribution, Assumptions and Application ...

Assumptions and Application of T Distribution Assumptions of t distribution 1. The sample observations are random 2. Samples are drawn from general distribution 3.

Example of the invisible effort, Imagine a time in history when the number ...

Imagine a time in history when the number system had not yet evolved a farmer needed to keep track of his cattle. What would he do to figure out whether his entire rattle returned

Example on discrete mathematics, Suppose that at some future time every tel...

Suppose that at some future time every telephone in the world is assigned a number that contains a country code, 1 to 3 digits long, that is, of the form X, XX , XXX or followed

Maths for fun-mathematics- in our lives, Maths For Fun :  Often, when I ha...

Maths For Fun :  Often, when I have time on my hands, I try to solve interesting mathematical questions of the following kind. Sometimes my friends and I create the problems, and

External forces, It is the catch all force. If there are some other forces ...

It is the catch all force. If there are some other forces which we decide we need to act on our object we lump them in now and call this good. We classically call F(t) the forcing

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd