Series solutions to differential equation, Mathematics

Assignment Help:

Before we find into finding series solutions to differential equations we require determining when we can get series solutions to differential equations. Therefore, let's start with the differential equation,

 p (x) y′′ + q (x) y′ + r (x )y = 0                   (1)

Now there we really do mean nonconstant coefficients. For this point we've only dealt along with constant coefficients. Though, with series solutions we can now contain nonconstant coefficient differential equations. As well as, in order to make the problems some nicer we will be dealing only along with polynomial coefficients.

Here, we say that x=x0 is an ordinary point if given both,

q(x)/p(x)                      and                  r(x)/p(x)

Both are analytic at x=x0. It is to say that such two quantities have Taylor series around x=x0. Our aim is only dealing with coefficients which are polynomials thus this will be equivalent to saying as,

p(x0) ≠ 0

If a point is not an ordinary point so we call this a singular point.

The fundamental idea to finding a series solution to a differential equation is to suppose that we can write the solution like a power series in the form,

1856_Series Solutions to Differential Equation9.png..................(2)

And then try to find out what the an's require to be. We will only be capable to do this if the point x=x0, is an ordinary point. We will generally say as (2) is a series solution around x=x0.

Let's begin with a very fundamental example of this. Actually this will be so fundamental that we will contain constant coefficients. It will permit us to check that we find the exact solution.


Related Discussions:- Series solutions to differential equation

Negative three and positive eight inclusive represent y, The value of y is ...

The value of y is among negative three and positive eight inclusive. Which of the subsequent represents y? This inequality displays a solution set where y is greater than or eq

Direction cosines - vector, Direction Cosines This application of the ...

Direction Cosines This application of the dot product needs that we be in three dimensional (3D) space not like all the other applications we have looked at to this point.

.fractions, what is the difference between North America''s part of the tot...

what is the difference between North America''s part of the total population and Africa''s part

Geometry, can i get some triangle congruence proofs help?

can i get some triangle congruence proofs help?

Solve for x and y liner equation, Solve for x , y (x + y - 8)/2   ...

Solve for x , y (x + y - 8)/2   =( x + 2  y - 14)/3 = (3 x + y - 12 )/ 11   (Ans: x=2, y=6) Ans :     x+ y - 8/2  =   x + 2y - 14 /3  =    3x+ y- 12/11

Differentiate outline function in chain rules, Differentiate following. ...

Differentiate following. Solution : It requires the product rule & each derivative in the product rule will need a chain rule application as well. T ′ ( x ) =1/1+(2x) 2

Algebra, let setM={X,2X,4X} for any numberX .if average (arthemetic mean)of...

let setM={X,2X,4X} for any numberX .if average (arthemetic mean)of the number in setM is 14.what is the value of X?

Bounded intervals, Let a and b be fixed real numbers such that a ...

Let a and b be fixed real numbers such that a The open interval (a, b): We define an open interval (a, b) with end points a and b as a set of all r

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd