Series solutions to differential equation, Mathematics

Assignment Help:

Before we find into finding series solutions to differential equations we require determining when we can get series solutions to differential equations. Therefore, let's start with the differential equation,

 p (x) y′′ + q (x) y′ + r (x )y = 0                   (1)

Now there we really do mean nonconstant coefficients. For this point we've only dealt along with constant coefficients. Though, with series solutions we can now contain nonconstant coefficient differential equations. As well as, in order to make the problems some nicer we will be dealing only along with polynomial coefficients.

Here, we say that x=x0 is an ordinary point if given both,

q(x)/p(x)                      and                  r(x)/p(x)

Both are analytic at x=x0. It is to say that such two quantities have Taylor series around x=x0. Our aim is only dealing with coefficients which are polynomials thus this will be equivalent to saying as,

p(x0) ≠ 0

If a point is not an ordinary point so we call this a singular point.

The fundamental idea to finding a series solution to a differential equation is to suppose that we can write the solution like a power series in the form,

1856_Series Solutions to Differential Equation9.png..................(2)

And then try to find out what the an's require to be. We will only be capable to do this if the point x=x0, is an ordinary point. We will generally say as (2) is a series solution around x=x0.

Let's begin with a very fundamental example of this. Actually this will be so fundamental that we will contain constant coefficients. It will permit us to check that we find the exact solution.


Related Discussions:- Series solutions to differential equation

Illustrate exponential distribution, Q. Illustrate Exponential Distribution...

Q. Illustrate Exponential Distribution? Ans. These are two examples of events that have an exponential distribution: The length of time you wait at a bus stop for the n

Explain adding and subtracting in scientific notation, Explain Adding and S...

Explain Adding and Subtracting in Scientific Notation? To add or subtract numbers in scientific notation, the numbers must be expressed so that they have the same exponent.

Find the original average of boys and girls in the class, When 6 boys were ...

When 6 boys were admitted & 6 girls left the percentage of boys increased from 60% to 75%. Find the original no. of boys and girls in the class. Ans: Let the no. of Boys be x

Find the tangent to the curve, 1. Find the third and fourth derivatives of ...

1. Find the third and fourth derivatives of the function Y=5x 7 +3x-6-17x -3 2. Find the Tangent to the curve Y= 5x 3 +2x-1 At the point where x = 2.

Proof by Condratiction, "Prove by contradiction that no root of the equatio...

"Prove by contradiction that no root of the equation x^18 -2x^13 + x^5 -3x^3 + x - 2 = 0 is an integer divisible by 3" Any help would be very much appreciated!

Determine the area of the book jacket, A publishing company is creating a b...

A publishing company is creating a book jacket for a newly published textbook. Determine the area of the book jacket, given that the front cover is 8 in wide by 11 in high, the bin

Determine that the series is convergent or divergent, Determine or find out...

Determine or find out if the subsequent series is convergent or divergent.  If it converges find out its value. Solution To find out if the series is convergent we fir

Generate a 30-ounce solution which was 28% acid, A chemist mixed a solution...

A chemist mixed a solution which was 34% acid with another solution that was 18% acid to generate a 30-ounce solution which was 28% acid. How much of the 34% acid solution did he u

Expert , i want to work with you, please guide me

i want to work with you, please guide me

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd