Series solutions to differential equation, Mathematics

Assignment Help:

Before we find into finding series solutions to differential equations we require determining when we can get series solutions to differential equations. Therefore, let's start with the differential equation,

 p (x) y′′ + q (x) y′ + r (x )y = 0                   (1)

Now there we really do mean nonconstant coefficients. For this point we've only dealt along with constant coefficients. Though, with series solutions we can now contain nonconstant coefficient differential equations. As well as, in order to make the problems some nicer we will be dealing only along with polynomial coefficients.

Here, we say that x=x0 is an ordinary point if given both,

q(x)/p(x)                      and                  r(x)/p(x)

Both are analytic at x=x0. It is to say that such two quantities have Taylor series around x=x0. Our aim is only dealing with coefficients which are polynomials thus this will be equivalent to saying as,

p(x0) ≠ 0

If a point is not an ordinary point so we call this a singular point.

The fundamental idea to finding a series solution to a differential equation is to suppose that we can write the solution like a power series in the form,

1856_Series Solutions to Differential Equation9.png..................(2)

And then try to find out what the an's require to be. We will only be capable to do this if the point x=x0, is an ordinary point. We will generally say as (2) is a series solution around x=x0.

Let's begin with a very fundamental example of this. Actually this will be so fundamental that we will contain constant coefficients. It will permit us to check that we find the exact solution.


Related Discussions:- Series solutions to differential equation

Fractions, The bowling alley suggests selecting a ball that is 1/7 of the b...

The bowling alley suggests selecting a ball that is 1/7 of the bowlers weight. If the bowler weighs 84 pounds, how much should the bowling ball weigh?

Express the gcd as a linear combination, Express the GCD of 48 and 18 as a ...

Express the GCD of 48 and 18 as a linear combination.              (Ans: Not unique) A=bq+r, where  o ≤  r 48=18x2+12 18=12x1+6 12=6x2+0 ∴ HCF (18,48) = 6 now  6

Calculate the profit of company, Company A and Company B have spent a lot o...

Company A and Company B have spent a lot of money on research to develop a cure for the common cold. Winter is approaching and there is certainly going to be a lot of demand for th

Geometry, P and Q are the points (12,0) and (0,-5) respectively,find the le...

P and Q are the points (12,0) and (0,-5) respectively,find the length of the median through the origin O of the triangle OPQ

Example of infinite interval - improper integrals, Evaluate the subsequent ...

Evaluate the subsequent integral. Solution This is an innocent enough looking integral. Though, because infinity is not a real number we cannot just integrate as norm

Calculate the volume and surface area of a sphere, Calculate the volume and...

Calculate the volume and surface area of a sphere: Calculate the volume and surface area of a sphere with r = 4".  Be sure to include units in your answer. Solution: V

Probability, an insurance salesman sells policies to 5 men, all of identica...

an insurance salesman sells policies to 5 men, all of identical age in good health. the probability that a man of this particular age will be alive 20 years hence is 2/3.Find the p

Find out the taylor series for f (x) = ex about x = 0, Find out the Taylor ...

Find out the Taylor Series for f (x) = e x about x = 0. Solution In fact this is one of the easier Taylor Series that we'll be asked to calculate.  To find out the Taylor

Find the least and greatest number of coins, Marc goes to the store with ex...

Marc goes to the store with exactly $1 in change. He has at least one of each coin less than a half-dollar coin, but he does not have a half-dollar coin. a. What is the least nu

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd