Series solutions to differential equation, Mathematics

Assignment Help:

Before we find into finding series solutions to differential equations we require determining when we can get series solutions to differential equations. Therefore, let's start with the differential equation,

 p (x) y′′ + q (x) y′ + r (x )y = 0                   (1)

Now there we really do mean nonconstant coefficients. For this point we've only dealt along with constant coefficients. Though, with series solutions we can now contain nonconstant coefficient differential equations. As well as, in order to make the problems some nicer we will be dealing only along with polynomial coefficients.

Here, we say that x=x0 is an ordinary point if given both,

q(x)/p(x)                      and                  r(x)/p(x)

Both are analytic at x=x0. It is to say that such two quantities have Taylor series around x=x0. Our aim is only dealing with coefficients which are polynomials thus this will be equivalent to saying as,

p(x0) ≠ 0

If a point is not an ordinary point so we call this a singular point.

The fundamental idea to finding a series solution to a differential equation is to suppose that we can write the solution like a power series in the form,

1856_Series Solutions to Differential Equation9.png..................(2)

And then try to find out what the an's require to be. We will only be capable to do this if the point x=x0, is an ordinary point. We will generally say as (2) is a series solution around x=x0.

Let's begin with a very fundamental example of this. Actually this will be so fundamental that we will contain constant coefficients. It will permit us to check that we find the exact solution.


Related Discussions:- Series solutions to differential equation

Shares and divend, a company of 10000 shares of rs 100 each declares a annu...

a company of 10000 shares of rs 100 each declares a annual dividend of 5 %.what is the total amount dividend paid by the company

Regarding submitting sample work, How can I submit a sample of my work in e...

How can I submit a sample of my work in either teaching online or checking homework as I am retired and doing this for the first time?

Dr.., I need some material on Bachet equation

I need some material on Bachet equation

Fermat''s theorem, Fermat's Theorem : If  f ( x ) contain a relative extre...

Fermat's Theorem : If  f ( x ) contain a relative extrema at x = c & f ′ (c ) exists then x = c is a critical point of f ( x ) . Actually, it will be a critical point such that f

Word problems, A baseball card was worth $5.00 in 1940. It doubled in value...

A baseball card was worth $5.00 in 1940. It doubled in value every decade. How much was it worth in 2000?

Factoring out a common monomial factor, Factoring Out a Common Monomial Fac...

Factoring Out a Common Monomial Factor? Say you have a polynomial, like 3x 4 y - 9x 3 y + 12x 2 y2 z and you want to factor it. Your first step is always to look for t

Distinct eigenvalues-sketching the phase portrait, Sketch the phase portrai...

Sketch the phase portrait for the given system. Solution : From the last illustration we know that the eigenvectors and eigenvalues for this system are, This tu

How far is that person from the starting point, A person travels 10 miles d...

A person travels 10 miles due north, 6 miles due west, 4 miles due north, and 12 miles due east. How far is that person from the initail state? a. 23 miles northeast b. 13 mi

Absolute convergence - sequences and series, Absolute Convergence Whil...

Absolute Convergence While we first talked about series convergence we in brief mentioned a stronger type of convergence but did not do anything with it as we didn't have any

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd