Series solutions to differential equation, Mathematics

Assignment Help:

Before we find into finding series solutions to differential equations we require determining when we can get series solutions to differential equations. Therefore, let's start with the differential equation,

 p (x) y′′ + q (x) y′ + r (x )y = 0                   (1)

Now there we really do mean nonconstant coefficients. For this point we've only dealt along with constant coefficients. Though, with series solutions we can now contain nonconstant coefficient differential equations. As well as, in order to make the problems some nicer we will be dealing only along with polynomial coefficients.

Here, we say that x=x0 is an ordinary point if given both,

q(x)/p(x)                      and                  r(x)/p(x)

Both are analytic at x=x0. It is to say that such two quantities have Taylor series around x=x0. Our aim is only dealing with coefficients which are polynomials thus this will be equivalent to saying as,

p(x0) ≠ 0

If a point is not an ordinary point so we call this a singular point.

The fundamental idea to finding a series solution to a differential equation is to suppose that we can write the solution like a power series in the form,

1856_Series Solutions to Differential Equation9.png..................(2)

And then try to find out what the an's require to be. We will only be capable to do this if the point x=x0, is an ordinary point. We will generally say as (2) is a series solution around x=x0.

Let's begin with a very fundamental example of this. Actually this will be so fundamental that we will contain constant coefficients. It will permit us to check that we find the exact solution.


Related Discussions:- Series solutions to differential equation

Order of Operations with Fractions, 1.)3 3/8 divided by 4 7/8 plus 3 2.)4 ...

1.)3 3/8 divided by 4 7/8 plus 3 2.)4 1/2 minus 3/4 divided by 2 3/8

L''hospital''s rule, L'Hospital's Rule Assume that we have one of the g...

L'Hospital's Rule Assume that we have one of the given cases, where a is any real number, infinity or negative infinity.  In these cases we have, Therefore, L'H

Equations of planes - three dimensional spaces, Equations of Planes Ear...

Equations of Planes Earlier we saw a couple of equations of planes.  Though, none of those equations had three variables in them and were actually extensions of graphs which we

Grouping-categories of situations requiring division , Grouping - situatio...

Grouping - situations in which we need to find the number of portions of a given size which can be obtained from a given quantity. (e.g., if there are 50 children in a class and t

How to calculate probability of event, Q. How to calculate Probability of e...

Q. How to calculate Probability of event? Ans. What chance do I have to toss the coin and get a head? You might think 50-50, 50%. What about tossing it 5 times and getting

Simultaneous equations with two or more than two variables, Method to solve...

Method to solve Simultaneous Equations with two or more than two variables Method  Above we have seen equations wherein we are required to find the value of the

Lpp, A paper mill produces two grades of paper viz., X and Y. Because of ra...

A paper mill produces two grades of paper viz., X and Y. Because of raw material restrictions, it cannot produce more than 400 tons of grade X paper and 300 tons of grade Y paper i

Objectives of why learn mathematics, Objectives After studying this uni...

Objectives After studying this unit, you should be able to explain how mathematics is useful in our daily lives; explain the way mathematical concepts grow; iden

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd