Series solutions to differential equation, Mathematics

Assignment Help:

Before we find into finding series solutions to differential equations we require determining when we can get series solutions to differential equations. Therefore, let's start with the differential equation,

 p (x) y′′ + q (x) y′ + r (x )y = 0                   (1)

Now there we really do mean nonconstant coefficients. For this point we've only dealt along with constant coefficients. Though, with series solutions we can now contain nonconstant coefficient differential equations. As well as, in order to make the problems some nicer we will be dealing only along with polynomial coefficients.

Here, we say that x=x0 is an ordinary point if given both,

q(x)/p(x)                      and                  r(x)/p(x)

Both are analytic at x=x0. It is to say that such two quantities have Taylor series around x=x0. Our aim is only dealing with coefficients which are polynomials thus this will be equivalent to saying as,

p(x0) ≠ 0

If a point is not an ordinary point so we call this a singular point.

The fundamental idea to finding a series solution to a differential equation is to suppose that we can write the solution like a power series in the form,

1856_Series Solutions to Differential Equation9.png..................(2)

And then try to find out what the an's require to be. We will only be capable to do this if the point x=x0, is an ordinary point. We will generally say as (2) is a series solution around x=x0.

Let's begin with a very fundamental example of this. Actually this will be so fundamental that we will contain constant coefficients. It will permit us to check that we find the exact solution.


Related Discussions:- Series solutions to differential equation

Example of factoring quadratic polynomials, Factor following polynomials. ...

Factor following polynomials.                               x 2 + 2x -15 Solution x 2 +2x -15 Okay since the first term is x 2 we know that the factoring has to ta

Arc length and surface area revisited, Arc Length and Surface Area Revisite...

Arc Length and Surface Area Revisited We won't be working any instances in this part.  This section is here exclusively for the aim of summarizing up all the arc length and su

LCM, What is the LCM of 4, 6, 18

What is the LCM of 4, 6, 18

Tangent lines, Tangent Lines : The first problem which we're going to stud...

Tangent Lines : The first problem which we're going to study is the tangent line problem.  Before getting into this problem probably it would be best to define a tangent line.

How to add fractions involving negative numbers, Q. How to add fractions In...

Q. How to add fractions Involving Negative Numbers? Ans. Adding fractions involving negative numbers, and subtracting them, are only slightly different. But, I'll write do

Product moment coefficient (r), Product Moment Coefficient (r) ...

Product Moment Coefficient (r) This gives an indication of the strength of the linear relationship among two variables.                                     N

Determine the equation of the line, Example :  Determine the equation of th...

Example :  Determine the equation of the line which passes through the point (8, 2) and is, parallel to the line given by 10 y+ 3x = -2 Solution In both of parts we are goi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd