Series solutions to differential equation, Mathematics

Assignment Help:

Before we find into finding series solutions to differential equations we require determining when we can get series solutions to differential equations. Therefore, let's start with the differential equation,

 p (x) y′′ + q (x) y′ + r (x )y = 0                   (1)

Now there we really do mean nonconstant coefficients. For this point we've only dealt along with constant coefficients. Though, with series solutions we can now contain nonconstant coefficient differential equations. As well as, in order to make the problems some nicer we will be dealing only along with polynomial coefficients.

Here, we say that x=x0 is an ordinary point if given both,

q(x)/p(x)                      and                  r(x)/p(x)

Both are analytic at x=x0. It is to say that such two quantities have Taylor series around x=x0. Our aim is only dealing with coefficients which are polynomials thus this will be equivalent to saying as,

p(x0) ≠ 0

If a point is not an ordinary point so we call this a singular point.

The fundamental idea to finding a series solution to a differential equation is to suppose that we can write the solution like a power series in the form,

1856_Series Solutions to Differential Equation9.png..................(2)

And then try to find out what the an's require to be. We will only be capable to do this if the point x=x0, is an ordinary point. We will generally say as (2) is a series solution around x=x0.

Let's begin with a very fundamental example of this. Actually this will be so fundamental that we will contain constant coefficients. It will permit us to check that we find the exact solution.


Related Discussions:- Series solutions to differential equation

Find the frame of a quadratic polynomial , If α, β are the zeros of the pol...

If α, β are the zeros of the polynomial x 2 +8x +6 frame a Quadratic polynomial whose zeros are a)  1/α and  1/β b) 1+ β/α , 1+ α/β. Ans. P(x) = x 2 +8x +6 α + β = -8

Why x and y are simplifying expressions, Why x and y are Simplifying Expres...

Why x and y are Simplifying Expressions? You're doing algebra now, and you know you're going to see x's and y's. But before we work with x's and y's, we'll explore why we use t

Estimate percent of the babies born among 6 and 8.5 pounds, 25% of babies b...

25% of babies born at Yale New Haven Hospital weigh less than 6 pounds and 78% weigh less than 8.5 pounds. What percent of the babies born at Yale New Haven Hospital weigh among 6

Integer., How do we add integers

How do we add integers

Damping force, The subsequent force that we want to consider is damping. Th...

The subsequent force that we want to consider is damping. This force may or may not be there for any specified problem. Dampers work to counteract any movement. There are some w

Calculate the height of the tunnel and the perimeter, The adjoining figure...

The adjoining figure shows the cross-section of a railway tunnel. The radius of the tunnel is 3.5m (i.e., OA=3.5m) and ∠AOB=90 o . Calculate : i.       the height of the

Give the definition of logarithms, Give the Definition of Logarithms ? ...

Give the Definition of Logarithms ? A logarithm to the base a of a number x is the power to which a is raised to get x. In equation format: If x = ay, then log a x = y.

Utilizes second derivative test to classify critical point, Utilizes the se...

Utilizes the second derivative test to classify the critical points of the function,                                               h ( x ) = 3x 5 - 5x 3 + 3 Solution T

Proof of root test - sequences and series, Proof of Root Test  Firstly...

Proof of Root Test  Firstly note that we can suppose without loss of generality that the series will initiate at n = 1 as we've done for all our series test proofs.  As well n

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd