Series solutions to differential equation, Mathematics

Assignment Help:

Before we find into finding series solutions to differential equations we require determining when we can get series solutions to differential equations. Therefore, let's start with the differential equation,

 p (x) y′′ + q (x) y′ + r (x )y = 0                   (1)

Now there we really do mean nonconstant coefficients. For this point we've only dealt along with constant coefficients. Though, with series solutions we can now contain nonconstant coefficient differential equations. As well as, in order to make the problems some nicer we will be dealing only along with polynomial coefficients.

Here, we say that x=x0 is an ordinary point if given both,

q(x)/p(x)                      and                  r(x)/p(x)

Both are analytic at x=x0. It is to say that such two quantities have Taylor series around x=x0. Our aim is only dealing with coefficients which are polynomials thus this will be equivalent to saying as,

p(x0) ≠ 0

If a point is not an ordinary point so we call this a singular point.

The fundamental idea to finding a series solution to a differential equation is to suppose that we can write the solution like a power series in the form,

1856_Series Solutions to Differential Equation9.png..................(2)

And then try to find out what the an's require to be. We will only be capable to do this if the point x=x0, is an ordinary point. We will generally say as (2) is a series solution around x=x0.

Let's begin with a very fundamental example of this. Actually this will be so fundamental that we will contain constant coefficients. It will permit us to check that we find the exact solution.


Related Discussions:- Series solutions to differential equation

Heat loss in cylindrical pipe, which physics law is used to describe heat l...

which physics law is used to describe heat loss in cylindrical pipe

Halm''s differential equation, please i need the solution for halm''s diffe...

please i need the solution for halm''s differential equation

Real and distinct roots, Now we start solving constant linear, coefficient ...

Now we start solving constant linear, coefficient and second order differential and homogeneous equations. Thus, let's recap how we do this from the previous section. We start alon

Give the introduction about graphing, Give the  introduction about Graphin...

Give the  introduction about Graphing? Somebody tells you that x = 5 and y = 3. "What does it all mean?!" you shout. Well here's a picture: This picture is what's call

Tangents, case 2:when center is not known proof

case 2:when center is not known proof

Logarithm functions, Logarithm Functions : In this section we'll discuss l...

Logarithm Functions : In this section we'll discuss look at a function which is related to the exponential functions we will learn logarithms in this section. Logarithms are one o

Numerical analysis and computer techniques, write a fortan programme to gen...

write a fortan programme to generate prime number between 1 to 100

Solve the form x2 - bx - c in factoring polynomials, Solve The form x 2 -...

Solve The form x 2 - bx - c in  Factoring Polynomials ? This tutorial will help you factor quadratics that look something like this: x 2 - 11x - 12 (No lead coefficient

Dimensions and degree of an expression, Binomials, Trinomials and P...

Binomials, Trinomials and Polynomials which we have seen above are not the only type. We can have them in a single variable say 'x' and of the form x 2 + 4

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd