Series solutions to differential equation, Mathematics

Assignment Help:

Before we find into finding series solutions to differential equations we require determining when we can get series solutions to differential equations. Therefore, let's start with the differential equation,

 p (x) y′′ + q (x) y′ + r (x )y = 0                   (1)

Now there we really do mean nonconstant coefficients. For this point we've only dealt along with constant coefficients. Though, with series solutions we can now contain nonconstant coefficient differential equations. As well as, in order to make the problems some nicer we will be dealing only along with polynomial coefficients.

Here, we say that x=x0 is an ordinary point if given both,

q(x)/p(x)                      and                  r(x)/p(x)

Both are analytic at x=x0. It is to say that such two quantities have Taylor series around x=x0. Our aim is only dealing with coefficients which are polynomials thus this will be equivalent to saying as,

p(x0) ≠ 0

If a point is not an ordinary point so we call this a singular point.

The fundamental idea to finding a series solution to a differential equation is to suppose that we can write the solution like a power series in the form,

1856_Series Solutions to Differential Equation9.png..................(2)

And then try to find out what the an's require to be. We will only be capable to do this if the point x=x0, is an ordinary point. We will generally say as (2) is a series solution around x=x0.

Let's begin with a very fundamental example of this. Actually this will be so fundamental that we will contain constant coefficients. It will permit us to check that we find the exact solution.


Related Discussions:- Series solutions to differential equation

Wit tester., two fathers and two sons went fishing . they caught only 3 fis...

two fathers and two sons went fishing . they caught only 3 fish and divided them equally among themselves without cutting. is it possible? how?

Discrete-time signals as energy or power signals, Classify the following di...

Classify the following discrete-time signals as energy or power signals. If the signal is of energy type, find its energy. Otherwise, find the average power of the signal. X 1

Derivatives with chain rule, Chain Rule : We've seen many derivatives...

Chain Rule : We've seen many derivatives.  However, they have all been functions similar to the following kinds of functions. R ( z ) = √z      f (t ) = t 50

Calculus, I need help with my calculus work

I need help with my calculus work

Ratio test - sequences and series, Ratio Test In this part we are goin...

Ratio Test In this part we are going to take a look at a test that we can make use to see if a series is absolutely convergent or not.  Remind that if a series is absolutely c

What is monomials and polynomials in maths, What is Monomials and Polynomia...

What is Monomials and Polynomials in maths? An expression like 7x is called a monomial. A monomial is an integer, a variable, or a product of integers and variables. Other e

Twice a number increased by 11 is equal to 32 less three, Twice a number in...

Twice a number increased by 11 is equal to 32 less than three times the number. Find out the number. Let x = the number. Now translate every part of the sentence. Twice a numb

What is pythagorean triples, What is Pythagorean Triples? A set of thre...

What is Pythagorean Triples? A set of three numbers a, b, and c that can satisfy the equation A 2 +b 2 = c 2 , is called a Pythagorean triple. The following is a list of

Logarithmic functions, y=log4(x). i am unsure what this graph is supposed t...

y=log4(x). i am unsure what this graph is supposed to look like?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd