Series solutions to differential equation, Mathematics

Assignment Help:

Before we find into finding series solutions to differential equations we require determining when we can get series solutions to differential equations. Therefore, let's start with the differential equation,

 p (x) y′′ + q (x) y′ + r (x )y = 0                   (1)

Now there we really do mean nonconstant coefficients. For this point we've only dealt along with constant coefficients. Though, with series solutions we can now contain nonconstant coefficient differential equations. As well as, in order to make the problems some nicer we will be dealing only along with polynomial coefficients.

Here, we say that x=x0 is an ordinary point if given both,

q(x)/p(x)                      and                  r(x)/p(x)

Both are analytic at x=x0. It is to say that such two quantities have Taylor series around x=x0. Our aim is only dealing with coefficients which are polynomials thus this will be equivalent to saying as,

p(x0) ≠ 0

If a point is not an ordinary point so we call this a singular point.

The fundamental idea to finding a series solution to a differential equation is to suppose that we can write the solution like a power series in the form,

1856_Series Solutions to Differential Equation9.png..................(2)

And then try to find out what the an's require to be. We will only be capable to do this if the point x=x0, is an ordinary point. We will generally say as (2) is a series solution around x=x0.

Let's begin with a very fundamental example of this. Actually this will be so fundamental that we will contain constant coefficients. It will permit us to check that we find the exact solution.


Related Discussions:- Series solutions to differential equation

Decimal representations of some basic angles, Decimal representations of so...

Decimal representations of some basic angles: As a last quick topic let's note that it will, on occasion, be useful to remember the decimal representations of some basic angles. S

Geometry of convex sets, (a) Given a norm jj jj on Rn, express the closed b...

(a) Given a norm jj jj on Rn, express the closed ball in Rn of radius r with center c as a set. (b) Given a set A and a vector v, all contained in Rn, express the translate of A by

Subtangents & subnormals, show that the subtangent at any point on parabola...

show that the subtangent at any point on parabola y2 =4ax is twice the abscissa at that point.

Rounding, how do you round to the nearest dollars?

how do you round to the nearest dollars?

Error analysis: describle and correct the error in plotting, to plot (5,-4)...

to plot (5,-4), start at (0,0) and move 5 units left and 4 units down

Left-handed limit, Left-handed limit We say provided we can mak...

Left-handed limit We say provided we can make f(x) as close to L as we desire for all x sufficiently close to a and x Note that the change in notation is extremely m

Standard trig equation, "Standard" trig equation: Now we need to move into...

"Standard" trig equation: Now we need to move into a distinct type of trig equation. All of the trig equations solved to this point were, in some way, more or less the "standard"

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd