Sequences - calculus, Mathematics

Assignment Help:

Sequences

Let us start off this section along with a discussion of just what a sequence is. A sequence is nothing much more than a list of numbers written in a particular order. The list may or may not consist of an infinite number of terms in them even though we will be dealing exclusively with infinite sequences in this class.  Common sequence terms are represented as follows,

a1 - first term

a2 - second term .....

an  - nth  term

an+1- (n+1)st term

As we will be dealing with infinite sequences every term in the sequence will be followed by other term as described above.  In the notation above we require to be very cautious with the subscripts. The subscript of n + 1 represents the next term in the sequence and NOT the one plus the nth term!  Alternatively,

An+1 ≠ an+1

Thus should be very careful while writing subscripts to ensure that the "+1" doesn't migrate out of the subscript! This is an simple mistake to make while you first start dealing with this type of thing.

There is a range of ways of that representing a sequence. Each of the following is similar ways of representing a sequence.

{a1, a2, ......, an, an+1, ...}            

{an}             

{an} n=1

In the above second and third notations is generally given by a formula.

A pair of notes is now in order about these notations.  First, note the variation among the above second and third notations.  If the starting point is not significant or is implied in some way through the problem it is frequently not written down as we did in the third notation.  Subsequently, we utilized a starting point of n = 1 in the third notation only thus we could write one down. Totally there is no reason to believe that a sequence will start at n = 1 .  A sequence will begin where ever it require to start.


Related Discussions:- Sequences - calculus

Simplify Radicals, Can I have simplify radicals for Alebgera 2

Can I have simplify radicals for Alebgera 2

Forced - damped vibrations, It is the full blown case where we consider eve...

It is the full blown case where we consider every final possible force which can act on the system. The differential equation in this case, Mu'' + γu'  + ku = F( t) The displ

Problem on numbers, # In a two-digit, if it is known that its unit''s digi...

# In a two-digit, if it is known that its unit''s digit exceeds its ten''s digit by 2 and that the product of the given number and the sum of its digits is equal to 144, then the

Solve 2 ln (x) - ln (1 - x ) = 2 single logarithm, Solve 2 ln (√x) - ln (1 ...

Solve 2 ln (√x) - ln (1 - x ) = 2 . Solution: Firstly get the two logarithms combined in a single logarithm. 2 ln (√x) - ln (x  - l) = 2 ln ((√x) 2 ) ln (1 - x ) = 2

Which general famously stated ''i shall return'', Which general famously st...

Which general famously stated 'I shall return'? A. Bull Halsey B. George Patton C. Douglas MacArthur D. Omar Bradley

Circle, Circle Well, let's recall just what a circle is. A circle is al...

Circle Well, let's recall just what a circle is. A circle is all the points which are the similar distance, r - called the radius, from a point, ( h, k ) - called the center. I

Listing method, how will you explain the listing method?

how will you explain the listing method?

Determine the relative global error, Consider the differential equation giv...

Consider the differential equation give by y′ = -10(y - sin t) (a) Derive by hand exact solution that satis?es the initial condition y(0) = 1. (b) Numerically obtain the s

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd