Sequences - calculus, Mathematics

Assignment Help:

Sequences

Let us start off this section along with a discussion of just what a sequence is. A sequence is nothing much more than a list of numbers written in a particular order. The list may or may not consist of an infinite number of terms in them even though we will be dealing exclusively with infinite sequences in this class.  Common sequence terms are represented as follows,

a1 - first term

a2 - second term .....

an  - nth  term

an+1- (n+1)st term

As we will be dealing with infinite sequences every term in the sequence will be followed by other term as described above.  In the notation above we require to be very cautious with the subscripts. The subscript of n + 1 represents the next term in the sequence and NOT the one plus the nth term!  Alternatively,

An+1 ≠ an+1

Thus should be very careful while writing subscripts to ensure that the "+1" doesn't migrate out of the subscript! This is an simple mistake to make while you first start dealing with this type of thing.

There is a range of ways of that representing a sequence. Each of the following is similar ways of representing a sequence.

{a1, a2, ......, an, an+1, ...}            

{an}             

{an} n=1

In the above second and third notations is generally given by a formula.

A pair of notes is now in order about these notations.  First, note the variation among the above second and third notations.  If the starting point is not significant or is implied in some way through the problem it is frequently not written down as we did in the third notation.  Subsequently, we utilized a starting point of n = 1 in the third notation only thus we could write one down. Totally there is no reason to believe that a sequence will start at n = 1 .  A sequence will begin where ever it require to start.


Related Discussions:- Sequences - calculus

Lance has 70 cents margaret has 3/4 who has the most money, Lance has 70 ce...

Lance has 70 cents, Margaret has three-fourths of a dollar, Guy has two quarters and a dime, and Bill has six dimes. Who has the most money? Lance has 70 cents. Three-fourths o

Denote the statement in predicate calculus, Denote the subsequent statement...

Denote the subsequent statement in predicate calculus: "Everybody respects all the selfless leaders". Ans: For each X, if every Y that is a person respects X, then X is a selfl

Find out the volume of the solid- method of rings, Find out the volume of t...

Find out the volume of the solid obtained by rotating the region bounded by y = x 2 - 2x and  y = x about the line y = 4 . Solution: Firstly let's get the bounding region & t

ConnectEd, How do I increase and decrease tax and sales

How do I increase and decrease tax and sales

Find the rate at which its tip is moving, If the minute hand of a big clock...

If the minute hand of a big clock is 1.05 m long, find the rate at which its tip is moving in cm per minute.

determine that the relation is symmetric and transitive, 1. Let R and S be...

1. Let R and S be relations on a set A. For each statement, conclude whether it is true or false. In each case, provide a proof or a counterexample, whichever applies. (a) If R

Determine if the three vectors lie in similar plane or not, Determine if th...

Determine if the three vectors a → = (1, 4, -7), b → = (2, -1, 4) and c → = (0, -9, 18) lie in similar plane or not. Solution Thus, as we noted prior to this example al

Mensuration, a hollow cone is cut by a plane parallel to the base and the u...

a hollow cone is cut by a plane parallel to the base and the upper portion is removed. if the volume of the frustum obtained is 26/27 of volume of the cone. find at what height abo

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd