Sequences - calculus, Mathematics

Assignment Help:

Sequences

Let us start off this section along with a discussion of just what a sequence is. A sequence is nothing much more than a list of numbers written in a particular order. The list may or may not consist of an infinite number of terms in them even though we will be dealing exclusively with infinite sequences in this class.  Common sequence terms are represented as follows,

a1 - first term

a2 - second term .....

an  - nth  term

an+1- (n+1)st term

As we will be dealing with infinite sequences every term in the sequence will be followed by other term as described above.  In the notation above we require to be very cautious with the subscripts. The subscript of n + 1 represents the next term in the sequence and NOT the one plus the nth term!  Alternatively,

An+1 ≠ an+1

Thus should be very careful while writing subscripts to ensure that the "+1" doesn't migrate out of the subscript! This is an simple mistake to make while you first start dealing with this type of thing.

There is a range of ways of that representing a sequence. Each of the following is similar ways of representing a sequence.

{a1, a2, ......, an, an+1, ...}            

{an}             

{an} n=1

In the above second and third notations is generally given by a formula.

A pair of notes is now in order about these notations.  First, note the variation among the above second and third notations.  If the starting point is not significant or is implied in some way through the problem it is frequently not written down as we did in the third notation.  Subsequently, we utilized a starting point of n = 1 in the third notation only thus we could write one down. Totally there is no reason to believe that a sequence will start at n = 1 .  A sequence will begin where ever it require to start.


Related Discussions:- Sequences - calculus

Squeeze theorem (sandwich theorem and the pinching theorem), Squeeze Theore...

Squeeze Theorem (Sandwich Theorem and the Pinching Theorem) Assume that for all x on [a, b] (except possibly at x = c ) we have,                                 f ( x )≤ h (

Fermat''s little theorem, 1. How many closed necklaces of length 7 can be m...

1. How many closed necklaces of length 7 can be made with 3 colors? (notice that 7 is a prime) 2. How many closed necklaces of length 10 can be made with 3 colors (this is di erent

Compound interest, Draw a flowchart for accumulated principal at the end of...

Draw a flowchart for accumulated principal at the end of 5 years by taking into account compound interest?

Find probabilities for the standard normal distribution, Q. Find Probabilit...

Q. Find Probabilities for the Standard Normal Distribution? Ans. Suppose the history teacher decides to distribute the final grades of his class with a normal distribution

Triangle and its properties, in a triangle angle a is 70 and angle b is 50 ...

in a triangle angle a is 70 and angle b is 50 what is angle c.

Multiples, The sum of the smallest and largest multiples of 8 up to 60 is?

The sum of the smallest and largest multiples of 8 up to 60 is?

Arithmetic sequence, find a30 given that the first few terms of an arithmet...

find a30 given that the first few terms of an arithmetic sequence are given by 6,12,18...

Math on a spot, compare: 643,251: 633,512: 633,893. The answer is 633,512.

compare: 643,251: 633,512: 633,893. The answer is 633,512.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd