Sequences - calculus, Mathematics

Assignment Help:

Sequences

Let us start off this section along with a discussion of just what a sequence is. A sequence is nothing much more than a list of numbers written in a particular order. The list may or may not consist of an infinite number of terms in them even though we will be dealing exclusively with infinite sequences in this class.  Common sequence terms are represented as follows,

a1 - first term

a2 - second term .....

an  - nth  term

an+1- (n+1)st term

As we will be dealing with infinite sequences every term in the sequence will be followed by other term as described above.  In the notation above we require to be very cautious with the subscripts. The subscript of n + 1 represents the next term in the sequence and NOT the one plus the nth term!  Alternatively,

An+1 ≠ an+1

Thus should be very careful while writing subscripts to ensure that the "+1" doesn't migrate out of the subscript! This is an simple mistake to make while you first start dealing with this type of thing.

There is a range of ways of that representing a sequence. Each of the following is similar ways of representing a sequence.

{a1, a2, ......, an, an+1, ...}            

{an}             

{an} n=1

In the above second and third notations is generally given by a formula.

A pair of notes is now in order about these notations.  First, note the variation among the above second and third notations.  If the starting point is not significant or is implied in some way through the problem it is frequently not written down as we did in the third notation.  Subsequently, we utilized a starting point of n = 1 in the third notation only thus we could write one down. Totally there is no reason to believe that a sequence will start at n = 1 .  A sequence will begin where ever it require to start.


Related Discussions:- Sequences - calculus

Sequencing., how to select out time for m2

how to select out time for m2

Work in volume problems, Work : It is the last application of integr...

Work : It is the last application of integral which we'll be looking at under this course. In this section we'll be looking at the amount of work which is done through a forc

Find out primes of each denominator, Find out primes of each denominator: ...

Find out primes of each denominator: Add 1/15 and 7/10 Solution: Step 1:             Find out primes of each denominator. 15 = 5 x 3 10 = 5 x 2 Step 2:

Direction field for the differential equation, We require to check the deri...

We require to check the derivative thus let's use v = 60. Plugging it in (2) provides the slope of the tangent line as -1.96, or negative. Thus, for all values of v > 50 we will ha

Geometry Question, Does the Angle-Side Relationship Theorm work for all tri...

Does the Angle-Side Relationship Theorm work for all triangles or just a certain type of triangle? Does is correspond with the orthocenter of a triangle?

Maximin method -decision making under uncertainty, Decision making under un...

Decision making under uncertainty Various methods are used to make decision in circumstances whereas only the pay offs are identified and the likelihood of every state of natur

Partial Differential Equation, Determine the minimum capacity C of a Capaci...

Determine the minimum capacity C of a Capacitor given that: C =(ax/(x-a))+(xy/(y-b))+(yb/(b-y)) given that "a" and "b" are fixed values and "x" and "y" vary independently such th

Method of cylinders or method of shells, Method of cylinders or method of s...

Method of cylinders or method of shells The formula for the area in all of the cases will be,                                                        A = 2 ∏ ( radius ) (heig

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd