Sequences - calculus, Mathematics

Assignment Help:

Sequences

Let us start off this section along with a discussion of just what a sequence is. A sequence is nothing much more than a list of numbers written in a particular order. The list may or may not consist of an infinite number of terms in them even though we will be dealing exclusively with infinite sequences in this class.  Common sequence terms are represented as follows,

a1 - first term

a2 - second term .....

an  - nth  term

an+1- (n+1)st term

As we will be dealing with infinite sequences every term in the sequence will be followed by other term as described above.  In the notation above we require to be very cautious with the subscripts. The subscript of n + 1 represents the next term in the sequence and NOT the one plus the nth term!  Alternatively,

An+1 ≠ an+1

Thus should be very careful while writing subscripts to ensure that the "+1" doesn't migrate out of the subscript! This is an simple mistake to make while you first start dealing with this type of thing.

There is a range of ways of that representing a sequence. Each of the following is similar ways of representing a sequence.

{a1, a2, ......, an, an+1, ...}            

{an}             

{an} n=1

In the above second and third notations is generally given by a formula.

A pair of notes is now in order about these notations.  First, note the variation among the above second and third notations.  If the starting point is not significant or is implied in some way through the problem it is frequently not written down as we did in the third notation.  Subsequently, we utilized a starting point of n = 1 in the third notation only thus we could write one down. Totally there is no reason to believe that a sequence will start at n = 1 .  A sequence will begin where ever it require to start.


Related Discussions:- Sequences - calculus

Application of probability in business, Application of Probability in Busin...

Application of Probability in Business 1. Business games of chance for illustration, Raffles Lotteries. 2. Insurance firms: this is generally done when a new client or prop

Tangents, find a common tangent to two circles

find a common tangent to two circles

Divergence test - sequences and series, Divergence Test Once again...

Divergence Test Once again, do NOT misuse this test.  This test only says that a series is definite to diverge if the series terms do not go to zero in the limit.  If the

Siquence aned series, if 4,a and 16 are in the geometric sequence. Find the...

if 4,a and 16 are in the geometric sequence. Find the value

Prove intercept of a tangent between two parallel, Prove that the intercept...

Prove that the intercept of a tangent between two parallel tangents to a circle subtends a right angle at the centre. Since Δ ADF ≅ Δ DFC ∠ADF = ∠CDF ∴ ∠ADC = 2 ∠CDF

Topology, Is usual topology on R is comparable to lower limit topology on R...

Is usual topology on R is comparable to lower limit topology on R

Math, there is 22 owls . my mom gave me 6 more . how many owls do they have...

there is 22 owls . my mom gave me 6 more . how many owls do they have

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd