Semiconductor equations, Electrical Engineering

Assignment Help:

Semiconductor Equations 

The semiconductor equations that are relating these variables are shown below:

Carrier density:

n = ni exp (EFN - Ei / KT)        (1)

p = ni exp (Ei - EFP / KT)        (2)

In which EFN is the electron quasi Fermi level and EFP is the hole quasi Fermi level. These above 2 equations lead to 

Np = n­i2 exp (EFN - EFP/ KT)   (3)

In equilibrium EFN = EFP = Constant

Current:

There are two mechanism of current; electron current density and hole current density. There are various mechanisms of current flow:

  1. Drift
  2. Diffusion
  3. Thermionic emission
  4. Tunnelling

The final two mechanisms are significant frequently only at the interface of two different materials like a metal-semiconductor junction or a semiconductor-semiconductor junction where the two semiconductors are of dissimilar materials. Tunneling is as well significant in the case of PN junctions in which both sides are heavily doped.

The dominant conduction mechanisms include drift and diffusion in the bulk of semiconductor. The current densities because of these two mechanisms can be written as

JN = qnμNε + qDN dn/dx   (4)

JP = qnμPε + qDP dP/dx   (5)

In which μN and μP are electron and hole mobilities correspondingly and DN, DP are their diffusion constants.

Potential:

The potential and electric field in a semiconductor can be described in the following ways:

  1. Ψ = - EC /q + constant ; ε =  (1/q) (dEc / dX)
  2. Ψ = - EV /q + constant ; ε =  (1/q) (dEV / dX)
  3. Ψ = - Ei /q + constant ; ε =  (1/q) (dEi / dX)
  4. Ψ = - EO /q + constant ; ε =  (1/q) (dEO / dX)

All these definitions are equal and one or the other may be selected on the basis of convenience. The potential is connected to the carrier densities through the Poisson equation: -

2 Ψ / ∂X2 = - q/ε (p-n+ N+D - N-A)      (6)

In which the last two terms present the ionized donor and acceptor density.

 


Related Discussions:- Semiconductor equations

Cro, Diagram and explanation of cro

Diagram and explanation of cro

Briefly explain single mode and multimode fibres, Briefly explain single mo...

Briefly explain single mode and multimode fibres The optical fibres were categorized within two according to the number of modes it passes as: • Single mode fibres • Multi mode

Digital, #quesFind a minimum two level, multiple-output AND-OR gate circuit...

#quesFind a minimum two level, multiple-output AND-OR gate circuit to realize these functions (eight gates minimum). F1(a,b,c,d) =Sm(10,11,12,15) +D (4,8,14) F2(a,b,c,d) =Sm(4,11

Explain working of ammeter, Q. Explain working of Ammeter? In order to ...

Q. Explain working of Ammeter? In order to measure the current through a wire or line of a circuit, an ammeter is connected in series with the line. A practical ammeter can usu

Electric Optic Device, Transmission Through a LiNb0 3 Plate Examine the tr...

Transmission Through a LiNb0 3 Plate Examine the transmission of an unpolarized He-Ne laser beam (?o= 633 nm) normally incident on a LiNb0 3 plate (ne = 2.29, no = 2.20) of thickn

Interpoles and compensating windings, Interpoles and Compensating Windings:...

Interpoles and Compensating Windings: The most generally used method for aiding commutation is by providing the machine with inter poles, also known as commutating poles, or si

Regions of operation in bjt, Q. Regions of operation in BJT ? Transisto...

Q. Regions of operation in BJT ? Transistor find many applications like amplifier, switch etc. depending upon the polarity and the magnitude of the applied voltages across the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd