Semiconductor equations, Electrical Engineering

Assignment Help:

Semiconductor Equations 

The semiconductor equations that are relating these variables are shown below:

Carrier density:

n = ni exp (EFN - Ei / KT)        (1)

p = ni exp (Ei - EFP / KT)        (2)

In which EFN is the electron quasi Fermi level and EFP is the hole quasi Fermi level. These above 2 equations lead to 

Np = n­i2 exp (EFN - EFP/ KT)   (3)

In equilibrium EFN = EFP = Constant

Current:

There are two mechanism of current; electron current density and hole current density. There are various mechanisms of current flow:

  1. Drift
  2. Diffusion
  3. Thermionic emission
  4. Tunnelling

The final two mechanisms are significant frequently only at the interface of two different materials like a metal-semiconductor junction or a semiconductor-semiconductor junction where the two semiconductors are of dissimilar materials. Tunneling is as well significant in the case of PN junctions in which both sides are heavily doped.

The dominant conduction mechanisms include drift and diffusion in the bulk of semiconductor. The current densities because of these two mechanisms can be written as

JN = qnμNε + qDN dn/dx   (4)

JP = qnμPε + qDP dP/dx   (5)

In which μN and μP are electron and hole mobilities correspondingly and DN, DP are their diffusion constants.

Potential:

The potential and electric field in a semiconductor can be described in the following ways:

  1. Ψ = - EC /q + constant ; ε =  (1/q) (dEc / dX)
  2. Ψ = - EV /q + constant ; ε =  (1/q) (dEV / dX)
  3. Ψ = - Ei /q + constant ; ε =  (1/q) (dEi / dX)
  4. Ψ = - EO /q + constant ; ε =  (1/q) (dEO / dX)

All these definitions are equal and one or the other may be selected on the basis of convenience. The potential is connected to the carrier densities through the Poisson equation: -

2 Ψ / ∂X2 = - q/ε (p-n+ N+D - N-A)      (6)

In which the last two terms present the ionized donor and acceptor density.

 


Related Discussions:- Semiconductor equations

Crossmagnetisation, what is crossmagnetisation in dc generator

what is crossmagnetisation in dc generator

Explain rs232c standard, Explain RS232C Standard. RS232C: 1. Stand...

Explain RS232C Standard. RS232C: 1. Standard described for asynchronous communications where there is given timing among data bits and no fixed timing among the characters

Electromagnetism, explain how can you find hysteresis loss from hysteresis ...

explain how can you find hysteresis loss from hysteresis loop

For parity flag - conditional jumps , For parity Flag  JPE ( jump on ...

For parity Flag  JPE ( jump on Parity even ) and  JPO  ( Jump or Parity Odd) Instruction JPE  transfer  the execution of the  program  to the specified memory  address i

Determine the number of bits of a natural binary encoder, Determine the num...

Determine the number of bits of a natural binary encoder that works with the quantizer: a) If the extreme levels are ±3.1 V, with a step size of 0.2 V. (b) If there are 128 q

Working of a negative clamping circuit, Q. Draw and explain the working of ...

Q. Draw and explain the working of a negative clamping circuit. The clamping network shown above is a negative clamping circuit that will clamp the input signal to a negative d

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd