Schrodinger wave equation, chemistry, Microeconomics

Assignment Help:

The Schrodinger wave equation generalizes the fitting-in-of-waves procedure.

The waves that "fit" into the region to which the particle is contained can be recognized "by inspection" only for a few simple systems. For other problem a mathematical procedure must be used. The Schrodinger wave equation, suggested by Erwin Schrodinger in 1926, provides one method for doing this. You will see, when we again do the particle-on-a-line problem, that this equation extends the pictorial fitting-in-of-waves procedure.

Think of the method in which the Schrodinger equation is used as the counterpart of the more familiar classical parts in which Newton's laws are used. Recall that equations, such as ƒ = ma, based on Newton's law are presented without derivation. These laws let us calculate the dynamic behavior of ordinary objects. We accept Newton's laws and the equation derived from because the results are agree from experiment. Schrodinger's equation is also presented without derivation. We accept the results that we obtain by using it because in all cases where the results have been tested, they have been in agreement with experiment. Just as one uses and trusts ƒ = ma, so one must use and, to the extent that seems justified, trust the Schrodinger equation.

The Schrodinger equation, as with the direct use of the de Broglie waves, leads to waves from which all other information follows. From these waves, we obtain immediately the allowed energies of any confined particle and the probability of the particle being at various positions.

We begin by writing the form of the Schrodinger equation that lets us deduce the waves, and then the energies and position probabilities, for a particle that moves along one dimension. Let x be the variable that locates positions along this dimension. The behavior of the particle depends on the potential energy that it would have at various positions. Let U (x) be the mathematical function that describes the potential energy. The Schrodinger equation requires us to supply this function and to indicate the mass m of the particle being treated.

Solutions of the Schrodinger equation are in the form of mathematical functions that shows the amplitude of the wave at various x places. The square of this function gives the relative probability of the particles being at various positions. The energies for which these probabilities of the particles exist are the energies "allowed" to the particle.

The Schrodinger equation can be viewed as a method in which wave properties yield the total energy of a particle as the sum of its potential and kinetic energies. The potential energy contribution is given by the Schrodinger equation as a "weighting" of the potential energy at each position according to the value of the wave function at that position. The kinetic energy contribution of the first term can be appreciated by reference to the particle on a line results. The particle-on-a-line example produced the quite general result that waves for the highest energy of the wave function, the greater the kinetic energy, the greater the curvature of the wave function.

The general energy relation:

KE + PE = total energy

Becomes the one-dimensional Schrodinger equation;

-h2/8∏2m Χ d2?/dx2 + U(x)v = ε?

The potential energy contribution is given by the Schrodinger equation as a "weighting" of the potential energy at each position according to the value of the wave function amplitude at that position.

The kinetic-energy contribution fo the first term can be appreciated by reference to the particle-on-a-line results. The particle-on-a-line example produced the quite general result that the waves for the higher energy states had more nodes than the waves for the greater the curvature of the wave function, the greater the kinetic energy. This shows up in the Schrodinger equation as a relation between the second derivate of the wave function and the kinetic energy.

The behavior of a particle is deduced by finding a function and the kinetic energy will solve the differential equation after an appropriate expression for U (x) has been substituted. Solution functions generally exist for certain values for the allowed energies of the particle. The probability function also obtained from the solution function. In general may be either a real or a complex function. To allow for the second possibility, we should write not a sign but where implies the product of the wave function and its complex conjugate. Here we do not deal with problems that lead to complex wave functions. The probability is given by the simple squared term. 

Expertsmind.com offers unique solutions for chemistry assignments


Related Discussions:- Schrodinger wave equation, chemistry

Demand-pull inflation, The average price level has increased at a relativel...

The average price level has increased at a relatively rapid rate since 2008 even though the deep recession that UK experienced in 2008/09. The growth in the price level has been dr

Cost function, Costs: If raw materials, machines and other things require...

Costs: If raw materials, machines and other things required for production could be made available freely then the study of the theory of the production and indeed, the study of

Indifference curves, Indifference curves present all possible combinations ...

Indifference curves present all possible combinations of market baskets that give the similar level of satisfaction to a person. Indifference Curves 1. Indifferen

Pre-funded pension, Pre-Funded Pension: A pension plan in that funds are in...

Pre-Funded Pension: A pension plan in that funds are invested and accumulated throughout an individual's working life in order to pay for subsequent disbursement of pension benefit

Components of a time series, 1-      a-  What are the five components of a...

1-      a-  What are the five components of a time series? b- Briefly explain how you would estimate each component. c- What does deterministc trend mean?  How do you detren

PPC help, I don''t understand PPC at all

I don''t understand PPC at all

What should be the appropriate growth rate in any country, What should be t...

What should be the decent/appropriate growth rate in any country?  Answer:   A growth rate of among 2-3% is considered normal for mature developed countries; for LICs, 5-7% is

Define important functions are performed by the price system, What two impo...

What two important functions are performed by the price system? (1) The price system is an automatic method for distributing goods and services. (2) The price system defines t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd