Scatter diagram - correlation analysis, Applied Statistics

Assignment Help:

Scatter Diagram

The first step in correlation analysis is to visualize the relationship. For each unit of observation in correlation analysis there is a pair of numerical values. One is considered the independent variable; the other is considered dependent upon it and is called the dependent variable. One of the easiest ways of studying the correlation between the two variables is with the help of a scatter diagram.

A scatter diagram can give us two types of information. Visually, we can look for patterns that indicate whether the variables are related. Then, if the variables are related, we can see what kind of line, or estimating equation, describes this relationship.

The scatter diagram gives an indication of the nature of the potential relationship between the variables.

Example 

A sample of 10 employees of the Universal Computer Corporation was examined to relate the employees' score on an aptitude test taken at the beginning of their employment and their monthly sales volume. The Universal Computer Corporation wishes to estimate the nature of the relationship between these two variables

Aptitude Test Score

Monthly Sales (Thousands of Rupees)

Aptitude Test Score

Monthly Sales (Thousands of Rupees)

X

Y

X

Y

50

30

70

60

50

35

70

45

60

40

80

55

60

50

80

50

70

55

90

65

To determine the nature of the relationship for example, we initially draw a graph to observe the data points.

Figure 1

2406_scatter diagram.png

On the vertical axis, we plot the dependent variable monthly sales. On the horizontal axis we plot the independent variable aptitude test score. This visual display is called a scatter diagram.

In the figure given above, we see that larger monthly sales are associated with larger test scores. If we wish, we can draw a straight line through the points plotted in the figure. This hypothetical line enables us to further describe the relationship. A line that slopes upward to the right indicates that a direct, or a positive relation is present between the two variables. In the figure given above we see that this upward-sloping line appears to approximate the relationship being studied.

The figures below show additional relations that may exist between two variables. In figure 2(a), the nature of the relationship is linear. In this case, the line slopes downward. Thus, smaller values of Y are associated with larger values of X. This relation is called an inverse (linear) relation.

Figure 2

705_scatter diagram1.png

 

Figure 2(b) represents a relationship that is not linear. The nature of the relationship is better represented by a curve than by a straight line - that is, it is a curvilinear relation. The relationship is inverse since smaller values of Y are associated with larger values of X.

Figure 2(c) is another curvilinear relation. In this case, however, larger values of Y are associated with larger values of X. Hence, the relation is direct and curvilinear.

In figure 2(d), there is no relation between X and Y. We can draw neither a straight line nor a curve that adequately describes the data. The two variables are not associated.


Related Discussions:- Scatter diagram - correlation analysis

Calculate the ratio of the sample standard deviation, The Case Study includ...

The Case Study included information about the price for a full meal before and after the law change (in dollars).  Of interest is whether the differences in price for a full meal b

Transformation of data, PCA is a linear transformation that transforms the ...

PCA is a linear transformation that transforms the data to a new coordinate system such that the greatest variance by any projection of the data comes to lie on the first coordinat

business forecasting, Explain the characteristics of business forecasting

Explain the characteristics of business forecasting.

Logistic regression model, A marketing research firm was engaged by an auto...

A marketing research firm was engaged by an automobile manufacturer to conduct a pilot study to examine the feasibility of using logistic regression for ascertaining the likelihood

Sampling error , Sampling Error  It is the difference between the value...

Sampling Error  It is the difference between the value of the actual population parameter and the sample statistic. Samples are used to arrive at conclusions regarding the p

Pneumatic actuator design matrix, Pneumatic Actuator Design Matrix: The ra...

Pneumatic Actuator Design Matrix: The range of actuator design parameters have been provisionally assessed and are presented in Table. You are required to determine the following

Enumerate the set, Grid is the set of pairs {1, 2, 3, 4} x {1, 2, 3, 4}. ...

Grid is the set of pairs {1, 2, 3, 4} x {1, 2, 3, 4}. Image is the power set of Grid. An element of Image is a subset of Grid and can be represented by a diagram on a 4 by 4

Standard cost method, Under the standard cost method which is also referred...

Under the standard cost method which is also referred as the standard cost method ,stock receipts are assigned a standard cost. Any variations between the actual cost and standard

Large sample test for mean, Large Sample Test for Mean A random sample ...

Large Sample Test for Mean A random sample of size n (n > 30) has a sample mean    . To test the hypothesis that the population mean μ has a specified value  μ 0  let us formu

What are the null and alternative hypotheses, Test the following claim. Id...

Test the following claim. Identify the null hypothesis, alternative hypothesis, test statistic, critical value(s), conclusion about the null hypothesis, and final conclusion that

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd