Scatter diagram - correlation analysis, Applied Statistics

Assignment Help:

Scatter Diagram

The first step in correlation analysis is to visualize the relationship. For each unit of observation in correlation analysis there is a pair of numerical values. One is considered the independent variable; the other is considered dependent upon it and is called the dependent variable. One of the easiest ways of studying the correlation between the two variables is with the help of a scatter diagram.

A scatter diagram can give us two types of information. Visually, we can look for patterns that indicate whether the variables are related. Then, if the variables are related, we can see what kind of line, or estimating equation, describes this relationship.

The scatter diagram gives an indication of the nature of the potential relationship between the variables.

Example 

A sample of 10 employees of the Universal Computer Corporation was examined to relate the employees' score on an aptitude test taken at the beginning of their employment and their monthly sales volume. The Universal Computer Corporation wishes to estimate the nature of the relationship between these two variables

Aptitude Test Score

Monthly Sales (Thousands of Rupees)

Aptitude Test Score

Monthly Sales (Thousands of Rupees)

X

Y

X

Y

50

30

70

60

50

35

70

45

60

40

80

55

60

50

80

50

70

55

90

65

To determine the nature of the relationship for example, we initially draw a graph to observe the data points.

Figure 1

2406_scatter diagram.png

On the vertical axis, we plot the dependent variable monthly sales. On the horizontal axis we plot the independent variable aptitude test score. This visual display is called a scatter diagram.

In the figure given above, we see that larger monthly sales are associated with larger test scores. If we wish, we can draw a straight line through the points plotted in the figure. This hypothetical line enables us to further describe the relationship. A line that slopes upward to the right indicates that a direct, or a positive relation is present between the two variables. In the figure given above we see that this upward-sloping line appears to approximate the relationship being studied.

The figures below show additional relations that may exist between two variables. In figure 2(a), the nature of the relationship is linear. In this case, the line slopes downward. Thus, smaller values of Y are associated with larger values of X. This relation is called an inverse (linear) relation.

Figure 2

705_scatter diagram1.png

 

Figure 2(b) represents a relationship that is not linear. The nature of the relationship is better represented by a curve than by a straight line - that is, it is a curvilinear relation. The relationship is inverse since smaller values of Y are associated with larger values of X.

Figure 2(c) is another curvilinear relation. In this case, however, larger values of Y are associated with larger values of X. Hence, the relation is direct and curvilinear.

In figure 2(d), there is no relation between X and Y. We can draw neither a straight line nor a curve that adequately describes the data. The two variables are not associated.


Related Discussions:- Scatter diagram - correlation analysis

Median, introduction of median

introduction of median

Logistic regression model, A marketing research firm was engaged by an auto...

A marketing research firm was engaged by an automobile manufacturer to conduct a pilot study to examine the feasibility of using logistic regression for ascertaining the likelihood

Standard deviation , Standard Deviation  The concept of standard deviat...

Standard Deviation  The concept of standard deviation was first introduced by Karl Pearson in 1893. The standard deviation is the most important and the popular measure of disp

Find the optimal adaptive meshes for a skewed beta density, Show that the I...

Show that the ISB in a bin containing the origin of the double exponen-tial density, f(x) = exp(-|x|)/2, is O(h 3 ); hence, the discontinuity in the derivative of f does not have a

Simple linear regression, We are interested in assessing the effects of tem...

We are interested in assessing the effects of temperature (low, medium, and high) and technical configuration on the amount of waste output for a manufacturing plant. Suppose that

#vital statistics, # I have to make assignment on vital statistics so kindl...

# I have to make assignment on vital statistics so kindly guide me how to make and get good marks

The incidence of occupational disease , The incidence of occupational disea...

The incidence of occupational disease in an industry is such that the workers have a 20% chance of suffering from it. What is the probability that out of six workers 4 or more will

Stream flow gauging, (a) At a stream gauging station, the following dischar...

(a) At a stream gauging station, the following discharges and stage measurements were taken for the purpose of the rating curve at that section: Stage (m) 1

Keno, Having 11 numbered balls -0 to 10 -into a basket and have 6 spaces t...

Having 11 numbered balls -0 to 10 -into a basket and have 6 spaces to be numbered with the balls selected in each 6 chances and it returned it back to the basket each time. Chanc

Multivariate analysis of variance, Multivariate analysis of variance (MANOV...

Multivariate analysis of variance (MANOVA) is a technique to assess group differences across multiple metric dependent variables simultaneously, based on a set of categorical (non-

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd