Scatter diagram - correlation analysis, Applied Statistics

Assignment Help:

Scatter Diagram

The first step in correlation analysis is to visualize the relationship. For each unit of observation in correlation analysis there is a pair of numerical values. One is considered the independent variable; the other is considered dependent upon it and is called the dependent variable. One of the easiest ways of studying the correlation between the two variables is with the help of a scatter diagram.

A scatter diagram can give us two types of information. Visually, we can look for patterns that indicate whether the variables are related. Then, if the variables are related, we can see what kind of line, or estimating equation, describes this relationship.

The scatter diagram gives an indication of the nature of the potential relationship between the variables.

Example 

A sample of 10 employees of the Universal Computer Corporation was examined to relate the employees' score on an aptitude test taken at the beginning of their employment and their monthly sales volume. The Universal Computer Corporation wishes to estimate the nature of the relationship between these two variables

Aptitude Test Score

Monthly Sales (Thousands of Rupees)

Aptitude Test Score

Monthly Sales (Thousands of Rupees)

X

Y

X

Y

50

30

70

60

50

35

70

45

60

40

80

55

60

50

80

50

70

55

90

65

To determine the nature of the relationship for example, we initially draw a graph to observe the data points.

Figure 1

2406_scatter diagram.png

On the vertical axis, we plot the dependent variable monthly sales. On the horizontal axis we plot the independent variable aptitude test score. This visual display is called a scatter diagram.

In the figure given above, we see that larger monthly sales are associated with larger test scores. If we wish, we can draw a straight line through the points plotted in the figure. This hypothetical line enables us to further describe the relationship. A line that slopes upward to the right indicates that a direct, or a positive relation is present between the two variables. In the figure given above we see that this upward-sloping line appears to approximate the relationship being studied.

The figures below show additional relations that may exist between two variables. In figure 2(a), the nature of the relationship is linear. In this case, the line slopes downward. Thus, smaller values of Y are associated with larger values of X. This relation is called an inverse (linear) relation.

Figure 2

705_scatter diagram1.png

 

Figure 2(b) represents a relationship that is not linear. The nature of the relationship is better represented by a curve than by a straight line - that is, it is a curvilinear relation. The relationship is inverse since smaller values of Y are associated with larger values of X.

Figure 2(c) is another curvilinear relation. In this case, however, larger values of Y are associated with larger values of X. Hence, the relation is direct and curvilinear.

In figure 2(d), there is no relation between X and Y. We can draw neither a straight line nor a curve that adequately describes the data. The two variables are not associated.


Related Discussions:- Scatter diagram - correlation analysis

Pattie-lynns utility function, Pattie-Lynn's utility function for total as...

Pattie-Lynn's utility function for total assets is, in which A represents total assets in thousands of dollars. (a) Graph Pattie-Lynn's utility function. How would y

Estimation, what do we mean by critical region

what do we mean by critical region

Business statistics, Betting on sporting events is big business both in the...

Betting on sporting events is big business both in the US and abroad. Consider, for instance, next winter’s American football tournament known as the Superbowl. Billions of dollars

Kurtosis and skew, how to interpret results, a good explanation to help me ...

how to interpret results, a good explanation to help me understand.

Multiple correspondence analysis, Correspondence Analysis (CA) is a general...

Correspondence Analysis (CA) is a generalization of PCA to contingency tables. The factors of correspondence analysis give an orthogonal decomposi:ion of the Chi- square associated

Index Number of formulae, discuss the mathematical test of adequacy of inde...

discuss the mathematical test of adequacy of index number of formulae. prove algebraically that the laspeyre, paasche and fisher price index formulae satisfies this test. What is

HLT 362, What is an interaction? Describe an example and identify the varia...

What is an interaction? Describe an example and identify the variables within your population (work, social, academic, etc.) for which you might expect interactions?

Discriminant analysis, Discriminant analysis (DA) helps to determine which ...

Discriminant analysis (DA) helps to determine which variables discriminate between two or more naturally occurring groups. Mathematically equivalent to MANOVA, it ' is extensively

Good measure of quality, Education seems to be a very difficult field in wh...

Education seems to be a very difficult field in which to use quality methods. One possible outcome measures for colleges is the graduation rate (the percentage of the students matr

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd