Scatter diagram - correlation analysis, Applied Statistics

Assignment Help:

Scatter Diagram

The first step in correlation analysis is to visualize the relationship. For each unit of observation in correlation analysis there is a pair of numerical values. One is considered the independent variable; the other is considered dependent upon it and is called the dependent variable. One of the easiest ways of studying the correlation between the two variables is with the help of a scatter diagram.

A scatter diagram can give us two types of information. Visually, we can look for patterns that indicate whether the variables are related. Then, if the variables are related, we can see what kind of line, or estimating equation, describes this relationship.

The scatter diagram gives an indication of the nature of the potential relationship between the variables.

Example 

A sample of 10 employees of the Universal Computer Corporation was examined to relate the employees' score on an aptitude test taken at the beginning of their employment and their monthly sales volume. The Universal Computer Corporation wishes to estimate the nature of the relationship between these two variables

Aptitude Test Score

Monthly Sales (Thousands of Rupees)

Aptitude Test Score

Monthly Sales (Thousands of Rupees)

X

Y

X

Y

50

30

70

60

50

35

70

45

60

40

80

55

60

50

80

50

70

55

90

65

To determine the nature of the relationship for example, we initially draw a graph to observe the data points.

Figure 1

2406_scatter diagram.png

On the vertical axis, we plot the dependent variable monthly sales. On the horizontal axis we plot the independent variable aptitude test score. This visual display is called a scatter diagram.

In the figure given above, we see that larger monthly sales are associated with larger test scores. If we wish, we can draw a straight line through the points plotted in the figure. This hypothetical line enables us to further describe the relationship. A line that slopes upward to the right indicates that a direct, or a positive relation is present between the two variables. In the figure given above we see that this upward-sloping line appears to approximate the relationship being studied.

The figures below show additional relations that may exist between two variables. In figure 2(a), the nature of the relationship is linear. In this case, the line slopes downward. Thus, smaller values of Y are associated with larger values of X. This relation is called an inverse (linear) relation.

Figure 2

705_scatter diagram1.png

 

Figure 2(b) represents a relationship that is not linear. The nature of the relationship is better represented by a curve than by a straight line - that is, it is a curvilinear relation. The relationship is inverse since smaller values of Y are associated with larger values of X.

Figure 2(c) is another curvilinear relation. In this case, however, larger values of Y are associated with larger values of X. Hence, the relation is direct and curvilinear.

In figure 2(d), there is no relation between X and Y. We can draw neither a straight line nor a curve that adequately describes the data. The two variables are not associated.


Related Discussions:- Scatter diagram - correlation analysis

Chi square test as a distributional goodness of fit, Chi Square Test as a D...

Chi Square Test as a Distributional Goodness of Fit In day-to-day decision making managers often come across situations wherein they are in a state of dilemma about the applica

Probability function, Among the students doing a given course, there are fo...

Among the students doing a given course, there are four boys enrolled in the ordinary version of the course, six girls enrolled in the ordinary version of the course,and six boys e

Measures of dispersion, Measures of Dispersion ...

Measures of Dispersion Box 3: Food vs. Oil Below are the figures for foodgrain procurement   and cr

Factor loadings matrix, As we stated above, we start factor analysis with p...

As we stated above, we start factor analysis with principal component analysis, but we quickly diverge as we apply the a priori knowledge we brought to the problem. This knowled

Calculate the damping ratio for each system, (i) Plot the step responses of...

(i) Plot the step responses of the following second order systems and state the nature of each system. For each case, find the poles and plot the location of the poles in the compl

Choose the correct null hypotheses, For the following claim, find the null ...

For the following claim, find the null and alternative hypotheses, test statistic, P-value, critical value and draw a conclusion. Assume that a simple random sample has been selec

Introduction to probability, Introduction to Probability A ...

Introduction to Probability A student is considering whether she should enroll in an MBA educational program offered by a well-known college. Among othe

Root mean square deviation, Root Mean Square Deviation The standard d...

Root Mean Square Deviation The standard deviation is also called the ROOT MEAN SQUARE DEVIATION. This is because it is the ROOT (Step 4) of the MEAN (Step 3) o

Inference on reggression analysis, find the expected value of the mean squa...

find the expected value of the mean square error and of the mean square reggression

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd