Rules of integration, Mathematics

Assignment Help:

Rules of Integration

1. If 'k' is a constant then

∫Kdx

=  kx + c

2. In the above rule, if k = 1 then

∫dx  (this means integral of 1 which is written as dx and not 1 dx)

         = x + c

3. 

∫xndx = 52_rules of integration.png + c

*

- 1

The integral of 1/x or x-1 is

∫x1. dx =  ln x + c  x > 0

 

         The condition x > 0 is added because only positive numbers have logarithms.

4. 

∫akxdx =   1403_rules of integration1.png

+ c where 'a' and 'k' are constants.

 

5. 

∫eKxdx = 2443_rules of integration2.png + c since ln e = 1

2317_rules of integration3.png

Functions which differ from each other only by a constant have the same derivative. For example, the function F(x) = 4x + k has the same derivative, F'(x)= 4 = f(x), say, for any infinite number of possible values for k. If the process is reversed, it is clear that  ∫4dx is the indefinite integral for an infinite number of functions differing from each other only by a constant. The constant of integration, mentioned 'c' in the expression for integration earlier, thus represents the value of any constant which was part of the original function but precluded from the derivative by the rules of differentiation.

The graph of an indefinite integral ∫f(x)dx = F(x) + c, where 'c' is unspecified, is a family of curves parallel in the sense that the slope of the tangent to any of them at x is f(x). Specifying 'c' gives a single curve whereas changing 'c' shifts the curve vertically. If c = 0, the curve begins at the origin.

For example,  ∫4d(x)  = 4x + c. For c = -7, -3, 0, 1 and 4 the graph of this integral is given below.

Figure 

1868_rules of integration4.png

Related Discussions:- Rules of integration

Integer exponents, We will begin this chapter by looking at integer exponen...

We will begin this chapter by looking at integer exponents.  Actually, initially we will suppose that the exponents are +ve as well. We will look at zero & negative exponents in a

Geometric mean-geometric progression, Geometric mean - It is a measure ...

Geometric mean - It is a measure of central tendency normally utilized to measure industrial increases rates. - It is explained as the nth root of the product of 'n' observa

Help me please, Cristiano Ronaldo runs 33.6 kilometres per hour. Usain Bolt...

Cristiano Ronaldo runs 33.6 kilometres per hour. Usain Bolt set world record for running 100 m at 9.58 sec. Show me how to compare these two sportsmen. Step by step.

Runge kutta method, As noted, Euler's method is little used in practice, as...

As noted, Euler's method is little used in practice, as there are much better ways of solving initial value problems. By better, we mean, "able to achieve a result of the same prec

Correlation coefficient, Correlation coefficient - These are numerical...

Correlation coefficient - These are numerical measures of the correlations existing between the independent and the dependent variables - These are better measures of corre

Question, Hi I have a maths question related to construction as its a cons...

Hi I have a maths question related to construction as its a construction management course...i could send some example sheets too...could it be done?

Compound interest, you have RM5O,OOO to invest,and two fund that you''d li...

you have RM5O,OOO to invest,and two fund that you''d like to invest in.The You-Risk-It Fund yields 14% interest.The Extra-Dull Fund yields 6% interest.Besause of college financial-

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd