Rotation about the origin - 2-d and 3-d transformations, Computer Graphics

Assignment Help:

Rotation about the origin - 2-d and 3-d transformations

Specified a 2-D point P(x,y), which we need to rotate, along with respect to the origin O. The vector OP has a length 'r' and making a +ive or anticlockwise angle φ with respect to x-axis.

 Suppose P' (x'y') be the outcome of rotation of point P by an angle θ regarding the origin that is demonstrated in Figure 3.

1337_Rotation about the origin - 2-d and 3-d transformations.png

P(x,y) = P(r.cos φ,r.sin φ)

P'(x',y')=P[r.cos(φ+ θ),rsin(φ+ θ)]

The coordinates of P' are as:

x'=r.cos(θ+ φ)=r(cos θ cos φ -sin θ sin φ)

=x.cos θ -y.sin θ     (where x=rcosφ and y=rsinφ)

As like;

y'= rsin(θ+ φ)=r(sinθ cosφ + cosθ.sinφ)

=xsinθ+ycosθ

Hence,

1628_Rotation about the origin - 2-d and 3-d transformations 1.png

Hence, we have acquired the new coordinate of point P after the rotation. Within matrix form, the transformation relation among P' and P is specified by:

346_Rotation about the origin - 2-d and 3-d transformations 2.png

There is P'=P.Rq                                               ---------(5)

Here P'and P represents object points in 2-Dimentional Euclidean system and Rq is transformation matrix for anti-clockwise Rotation.

In terms of Homogeneous Coordinates system, equation (5) becomes as

2409_Rotation about the origin - 2-d and 3-d transformations 3.png

There is P'h=Ph.Rq,                                                     ---------(7)

Here P'h and Ph   represent object points, after and before needed transformation, in Homogeneous Coordinates and Rq is termed as homogeneous transformation matrix for anticlockwise  or =ive Rotation. Hence, P'h, the new coordinates of a transformed object, can be determined by multiplying previous object coordinate matrix, Ph, along with the transformation matrix for Rotation Rq.

Keep in mind that for clockwise rotation we have to put q = -q, hence the rotation matrix Rq , in Homogeneous Coordinates system, becomes:

1007_Rotation about the origin - 2-d and 3-d transformations 4.png


Related Discussions:- Rotation about the origin - 2-d and 3-d transformations

Graphics hardware - computer aided design, Graphics Hardware - Computer aid...

Graphics Hardware - Computer aided Design Despite with which advance graphic software you are working along with, if your output device is not well or hardware handling which

Video controller, Video controller : A Fixed area of the system memory co...

Video controller : A Fixed area of the system memory controller for the frame buffer, and the video controller is given direct access to the frame – buffer memory, frame – buffer

Archeology-applications for computer animation, Archeology: along with the...

Archeology: along with the advent of the computer, the archeologist has obtained a new tool, computer animation. An object-model can be made comparatively quick and without any we

Design and label the pattern of the folding carton, Question : You have...

Question : You have been approached to design a ‘tuck top auto-lock bottom' carton package for a high-end cosmetic jar under the brand name ‘Beauty One'. Your client asked you

Introduction, how can we write the introduction matter for graphicaluser in...

how can we write the introduction matter for graphicaluser interface

Different advertising hooks, Question: (a) Name two visual effects you...

Question: (a) Name two visual effects you would use to communicate: i. Good old days ii. Rebellion iii. Fear (b) Explain each of your answers given in section (a).

Reflection about a line - 2-d and 3-d transformations, Reflection about a L...

Reflection about a Line - 2-D and 3-D Transformations Reflection is a transformation that produces the mirror image of an object. Since we discussed that the mirror reflection

Cohen sutherland algorithm - 2d clipping algorithms, Cohen Sutherland algor...

Cohen Sutherland algorithm Point clipping is very simple.  All you need to check is whether a point is inside the window extremes in x- and y-directions.  For line clipping sev

Explain the merits and demerits of penetration techniques, Explain the meri...

Explain the merits and demerits of Penetration techniques. The merits and demerits of the Penetration techniques are as follows:     It is an inexpensive method.     It h

Introduction of 2-d and 3-d transformations, Introduction of 2-D and 3-D  ...

Introduction of 2-D and 3-D  Transformations In this, the subsequent things have been discussed in detail as given below: Different geometric transformations as transla

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd