Rotation about the origin - 2-d and 3-d transformations, Computer Graphics

Assignment Help:

Rotation about the origin - 2-d and 3-d transformations

Specified a 2-D point P(x,y), which we need to rotate, along with respect to the origin O. The vector OP has a length 'r' and making a +ive or anticlockwise angle φ with respect to x-axis.

 Suppose P' (x'y') be the outcome of rotation of point P by an angle θ regarding the origin that is demonstrated in Figure 3.

1337_Rotation about the origin - 2-d and 3-d transformations.png

P(x,y) = P(r.cos φ,r.sin φ)

P'(x',y')=P[r.cos(φ+ θ),rsin(φ+ θ)]

The coordinates of P' are as:

x'=r.cos(θ+ φ)=r(cos θ cos φ -sin θ sin φ)

=x.cos θ -y.sin θ     (where x=rcosφ and y=rsinφ)

As like;

y'= rsin(θ+ φ)=r(sinθ cosφ + cosθ.sinφ)

=xsinθ+ycosθ

Hence,

1628_Rotation about the origin - 2-d and 3-d transformations 1.png

Hence, we have acquired the new coordinate of point P after the rotation. Within matrix form, the transformation relation among P' and P is specified by:

346_Rotation about the origin - 2-d and 3-d transformations 2.png

There is P'=P.Rq                                               ---------(5)

Here P'and P represents object points in 2-Dimentional Euclidean system and Rq is transformation matrix for anti-clockwise Rotation.

In terms of Homogeneous Coordinates system, equation (5) becomes as

2409_Rotation about the origin - 2-d and 3-d transformations 3.png

There is P'h=Ph.Rq,                                                     ---------(7)

Here P'h and Ph   represent object points, after and before needed transformation, in Homogeneous Coordinates and Rq is termed as homogeneous transformation matrix for anticlockwise  or =ive Rotation. Hence, P'h, the new coordinates of a transformed object, can be determined by multiplying previous object coordinate matrix, Ph, along with the transformation matrix for Rotation Rq.

Keep in mind that for clockwise rotation we have to put q = -q, hence the rotation matrix Rq , in Homogeneous Coordinates system, becomes:

1007_Rotation about the origin - 2-d and 3-d transformations 4.png


Related Discussions:- Rotation about the origin - 2-d and 3-d transformations

Categorization of light resources - point source, Categorization of Light r...

Categorization of Light resources - Point source This is the easiest model for a light emitter. Currently rays from source obey radically diverging ways from the source positi

How to use illumination model to calculate vertex intensity, How to utilize...

How to utilize illumination model to calculate vertex intensity: For such we interpolate intensities beside the polygon edges, for all scan line the intensity at the intersecti

Computations with phong shading, Computations with Phong Shading Compu...

Computations with Phong Shading Computations involved along with Phong Shading:  i)   Find out average unit normal vector at each polygon vertex. ii)   Linearly interpol

3d studio max -softwares for computer animation, 3DStudio Max -Softwares fo...

3DStudio Max -Softwares for computer animation The successor to 3-DStudio 3.0, 3-DStudio Max runs in WindowsNT. This is completely object-oriented, featuring new enhancements a

Light sources - polygon rendering and ray tracing methods, Light Sources - ...

Light Sources - polygon rendering and ray tracing methods Light Sources are key parts in any ray traced scene, since without them; there would be no rays to trace. Light sour

What is raster scan display, What is  Raster Scan Display A raster sca...

What is  Raster Scan Display A raster scan display device using CRT on the other hand directs the electron beam across the screen, one row at a time from top to bottom. In a ra

Determine the steps uses in cohen sutherland line clipping, Steps uses in t...

Steps uses in the Cohen Sutherland Line Clipping Algorithm are: Figure: Steps for Cohen Sutherland Line Clipping STEP 1: Input:  x L , x R , y T , y B

Determine about the liquid crystal display, Determine about the Liquid Crys...

Determine about the Liquid Crystal Display LCDs are organic molecules, naturally in crystalline state, and they get liquified when excited by heat or E field. Crystalline state

Polygon meshes - modeling and rendering, Polygon Meshes - Modeling and Rend...

Polygon Meshes - Modeling and Rendering A polygonal surface to be sketched may not be easy and may have enormous curls and curves. Illustration: a crushed piece of paper or cr

Analog sound vs. digital sound, Analog Sound vs. Digital Sound Sound e...

Analog Sound vs. Digital Sound Sound engineers have been debating the respective merits of digital and analog sound reproduction ever if the form of digital sound recordings.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd