Rotation about the origin - 2-d and 3-d transformations, Computer Graphics

Assignment Help:

Rotation about the origin - 2-d and 3-d transformations

Specified a 2-D point P(x,y), which we need to rotate, along with respect to the origin O. The vector OP has a length 'r' and making a +ive or anticlockwise angle φ with respect to x-axis.

 Suppose P' (x'y') be the outcome of rotation of point P by an angle θ regarding the origin that is demonstrated in Figure 3.

1337_Rotation about the origin - 2-d and 3-d transformations.png

P(x,y) = P(r.cos φ,r.sin φ)

P'(x',y')=P[r.cos(φ+ θ),rsin(φ+ θ)]

The coordinates of P' are as:

x'=r.cos(θ+ φ)=r(cos θ cos φ -sin θ sin φ)

=x.cos θ -y.sin θ     (where x=rcosφ and y=rsinφ)

As like;

y'= rsin(θ+ φ)=r(sinθ cosφ + cosθ.sinφ)

=xsinθ+ycosθ

Hence,

1628_Rotation about the origin - 2-d and 3-d transformations 1.png

Hence, we have acquired the new coordinate of point P after the rotation. Within matrix form, the transformation relation among P' and P is specified by:

346_Rotation about the origin - 2-d and 3-d transformations 2.png

There is P'=P.Rq                                               ---------(5)

Here P'and P represents object points in 2-Dimentional Euclidean system and Rq is transformation matrix for anti-clockwise Rotation.

In terms of Homogeneous Coordinates system, equation (5) becomes as

2409_Rotation about the origin - 2-d and 3-d transformations 3.png

There is P'h=Ph.Rq,                                                     ---------(7)

Here P'h and Ph   represent object points, after and before needed transformation, in Homogeneous Coordinates and Rq is termed as homogeneous transformation matrix for anticlockwise  or =ive Rotation. Hence, P'h, the new coordinates of a transformed object, can be determined by multiplying previous object coordinate matrix, Ph, along with the transformation matrix for Rotation Rq.

Keep in mind that for clockwise rotation we have to put q = -q, hence the rotation matrix Rq , in Homogeneous Coordinates system, becomes:

1007_Rotation about the origin - 2-d and 3-d transformations 4.png


Related Discussions:- Rotation about the origin - 2-d and 3-d transformations

Program to implement procedures or functions, The goal of this assignment i...

The goal of this assignment is to implement procedures/functions using x86 assembly. In addition to implementing procedures/functions, this assignment requires to pass arguments us

Exceptional cases - orthographic projection, Exceptional cases - Orthograph...

Exceptional cases - Orthographic Projection 1)   We have an Orthographic projection, if f=0, then cot (β) =0 that is β=90 0 . 2)   β =cot-1 (1)=450 and this Oblique projec

Important point for transformation for isometric projection, Important Poin...

Important Points about the Transformation for isometric projection Note: We can also verify such Isometric transformation matrix through checking all the foreshortening fact

What is persistence, What is persistence? The time it takes the emitted...

What is persistence? The time it takes the emitted light from the screen to decompose one tenth of its original intensity is known as persistence.

Explain the term- control, Explain the term- Control Traffic lights (co...

Explain the term- Control Traffic lights (controlling the sequence of lights to maintain optimum traffic flow), chemical and nuclear plants (opening and closing valves, safety

What is aspect ratio, Define  Aspect ratio- Aspect ratio: The ratio ...

Define  Aspect ratio- Aspect ratio: The ratio of vertical points to horizontal points necessary to produce equal –length lines in both directions on the screen, is called as

Illustration of bezier curves - modeling and rendering, To prove ‾P (1) = p...

To prove ‾P (1) = p n Solution : since in the above case we determine each term excluding B n,n (u) will have numerous of (1 - u) i (i = 0 to n) consequently by using u = 1

Ellipse generating algorithm, Ellipse generating algorithm: Algorithm ...

Ellipse generating algorithm: Algorithm is similar to circle algorithm. We divide the ellipse on the positive quadrant into two regions. Region 1 where the slope > -1, and Reg

Translation - 2-d and 3-d transformations, Translation - 2-d and 3-d Transf...

Translation - 2-d and 3-d Transformations It is the process of changing the position of an object. Suppose an object point P(x,y)=xI+yJ be moved to P'(x',y') by the specified

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd