Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
When a machine has more than two poles, only a single pair of poles needs to be considered because the electric, magnetic, and mechanical conditions associated with every other pole pair are repetitions of those for the pole pair under consideration. The angle subtended by one pair of poles in a P-pole machine (or one cycle of flux distribution) is defined to be 360 electrical degrees,or2π electrical radians. So the relationship between the mechanical angle m and the angle in electrical units is given by
because one complete revolution has P/2 complete wavelengths (or cycles). In view of this relationship, for a two-polemachine, electrical degrees (or radians)will be the same asmechanical degrees (or radians).
In this section we set out to show that a rotating field of constant amplitude and sinusoidal space distribution of mmf around a periphery of the stator is produced by a three-phase winding located on the stator and excited by balanced three-phase currents when the respective phase windings are wound 2π/3 electrical radians (or 120 electrical degrees) apart in space. Let us consider the two-pole, three-phase winding arrangement on the stator shown in Figure.
The windings of the individual phases are displaced by 120 electrical degrees from each other in space around the air-gap periphery. The reference directions are given for positive phase currents. The concentrated full-pitch coils, shown here for simplicity and convenience, do in fact represent the actual distributed windings producing sinusoidal mmf waves centered on the magnetic axes of the respective phases. Thus, these three sinusoidal mmf waves are displaced by 120 electrical degrees from each other in space. Let a balanced three-phase excitation be applied with phase sequence a-b-c, ia = I cos ωs t ; ib = I cos(ωs t - 120°); ic = I cos(ωs t - 240°) where I is the maximum value of the current, and the time t = 0 is chosen arbitrarily when the a-phase current is a positive maximum. Each phase current is an ac wave varying in magnitude sinusoidally with time. Hence, the corresponding component mmf waves vary sinusoidally with time. The sum of these components yields the resultant mmf.
Discuss all the five software interrupt instructions. The INTEL family microprocessor consist of software interrupts INT, INT0, INT3 and BOUND and IRET. Out of all these five
LDAX Load Accumulator Indirect Instruction This instruction is used to copy data from memory location pointed by register pair only BC or DE to the accumulator HL pair
how do we construct wind turbines. procedures methods
I want to do programming in PIC controller and it needs to be done on particular development board.
Switching characteristics When a positive signal is applied GTO starts conducting before initiation of conduction anode current is zero and anode to cathode voltage Va
i am Eectrical engineer and i want to teach students on line mode. let me know the procedure. thanks pushpendra
E l e c t r ons and Holes For T> 0 K, there would be some electrons in the otherwise empty conduction band, and some empty states in the otherwise filled valence ban
operation and application of Class AB amplifiers
Explain all of your steps and follow a logical train of thought. Clearly describe all design rationale. 1) Design a device to deliver a sinusoidal 500kHz pulse through a piezoe
I want proof of shockley diode equation with all steps
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd