Rooted tree, Data Structure & Algorithms

Assignment Help:

It does not have any cycles (circuits, or closed paths), which would imply the existence of more than one path among two nodes. It is the most general kind of tree, and might be converted in the more familiar form though designating a node as the root. We can represent a tree like a construction containing nodes, and edges that represent a relationship among two nodes. In Figure, we will assume most common tree called rooted tree. A rooted tress has a single root node that has no parents.

349_rooted tree.png

Figure: A rooted tree

In more formal way, we can define tree T like a finite set of one or more nodes such that there is one designated node r called as the root of T, and the remaining nodes into (T - { r } ) are partitioned in n > 0 disjoint subsets T1, T2, ..., Tk  each of is a tree, and whose roots r1 , r2 , ..., rk , respectively, are children of r. The general tree is a generic tree which has one root node, and each node in the tree can have limitless number of child nodes. One popular employ of this kind of tree is a Family Tree.

A tree is an example of a more general category called graph.

  • A tree contains nodes connected by edges.
  • A root is node without parent.
  • Leaves are nodes having no children.
  • The root is at level 1. The child nodes of root are at level 2. The child nodes of nodes at level 2 are at level 3 and so forth.
  • The depth (height) of any Binary tree is equivalent to the number of levels in it.
  • Branching factor describe the maximum number of children to any node. Thus, a branching factor of 2 means a binary tree.
  • Breadth described the number of nodes at a level.
  • In a tree the depth of a node M is the length of the path from the root of the tree to M.
  • In a Binary tree a node has at most 2 children. The given are the properties of a Tree.

Full Tree: A tree having all the leaves at the similar level, and all the non-leaves having the similar degree

  • Level h of a full tree contains dh-1 nodes.
  • The first h levels of full tree have 1 + d + d2 + d3 + d4 + ....... + dh-1 = (dh -1)/(d - 1) nodes where d refer to the degree of nodes.
  • The number of edges = the number of nodes - 1 (Why? Because, an edge represents the relationship among a child & a parent, and every node has a parent except the root.
  • A tree of height h & degree d has at most d h - 1 element.

Related Discussions:- Rooted tree

The space - time trade off, The Space - Time Trade Off The best algorit...

The Space - Time Trade Off The best algorithm to solve a given problem is one that needs less space in memory and takes less time to complete its implementation. But in practic

Two-dimensional array, Two-dimensional array is shown in memory in followin...

Two-dimensional array is shown in memory in following two ways:  1.  Row major representation: To achieve this linear representation, the first row of the array is stored in th

Rooted tree, It does not have any cycles (circuits, or closed paths), which...

It does not have any cycles (circuits, or closed paths), which would imply the existence of more than one path among two nodes. It is the most general kind of tree, and might be co

Registers, what are registers? why we need register? Definition? Types? Wha...

what are registers? why we need register? Definition? Types? What registers can do for us?

Recurrence relation, solve the following relation by recursive method: T(n...

solve the following relation by recursive method: T(n)=2T(n^1/2)+log n

Amortized algorithm analysis, In the amortized analysis, the time needed to...

In the amortized analysis, the time needed to perform a set of operations is the average of all operations performed. Amortized analysis considers as a long sequence of operations

Implement a min-heap, Description A heap is an efficient tree-based data...

Description A heap is an efficient tree-based data structure that can be used as a priority queue. Recall that the abstract data type of a priority queue has the following opera

Linked List Variations, Part1: Deque and Bag Implementation First, complet...

Part1: Deque and Bag Implementation First, complete the Linked List Implementation of the Deque (as in Worksheet 19) and Bag ADTs (Worksheet 22). Files Needed: linkedList.c Linke

Explain complexity of an algorithm, Complexity of an Algorithm An algo...

Complexity of an Algorithm An algorithm is a sequence of steps to solve a problem; there may be more than one algorithm to solve a problem. The choice of a particular algorith

Non-recursive implementation of preorder traversal, For preorder traversal,...

For preorder traversal, in the worst case, the stack will rise to size n/2, where n refer to number of nodes in the tree. Another method of traversing binary tree non-recursively t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd