Rooted tree, Data Structure & Algorithms

Assignment Help:

It does not have any cycles (circuits, or closed paths), which would imply the existence of more than one path among two nodes. It is the most general kind of tree, and might be converted in the more familiar form though designating a node as the root. We can represent a tree like a construction containing nodes, and edges that represent a relationship among two nodes. In Figure, we will assume most common tree called rooted tree. A rooted tress has a single root node that has no parents.

349_rooted tree.png

Figure: A rooted tree

In more formal way, we can define tree T like a finite set of one or more nodes such that there is one designated node r called as the root of T, and the remaining nodes into (T - { r } ) are partitioned in n > 0 disjoint subsets T1, T2, ..., Tk  each of is a tree, and whose roots r1 , r2 , ..., rk , respectively, are children of r. The general tree is a generic tree which has one root node, and each node in the tree can have limitless number of child nodes. One popular employ of this kind of tree is a Family Tree.

A tree is an example of a more general category called graph.

  • A tree contains nodes connected by edges.
  • A root is node without parent.
  • Leaves are nodes having no children.
  • The root is at level 1. The child nodes of root are at level 2. The child nodes of nodes at level 2 are at level 3 and so forth.
  • The depth (height) of any Binary tree is equivalent to the number of levels in it.
  • Branching factor describe the maximum number of children to any node. Thus, a branching factor of 2 means a binary tree.
  • Breadth described the number of nodes at a level.
  • In a tree the depth of a node M is the length of the path from the root of the tree to M.
  • In a Binary tree a node has at most 2 children. The given are the properties of a Tree.

Full Tree: A tree having all the leaves at the similar level, and all the non-leaves having the similar degree

  • Level h of a full tree contains dh-1 nodes.
  • The first h levels of full tree have 1 + d + d2 + d3 + d4 + ....... + dh-1 = (dh -1)/(d - 1) nodes where d refer to the degree of nodes.
  • The number of edges = the number of nodes - 1 (Why? Because, an edge represents the relationship among a child & a parent, and every node has a parent except the root.
  • A tree of height h & degree d has at most d h - 1 element.

Related Discussions:- Rooted tree

Complete trees, This is a k-ary position tree wherein all levels are filled...

This is a k-ary position tree wherein all levels are filled from left to right. There are a number of specialized trees. They are binary trees, AVL-trees, binary search trees, 2

Calculation of storage complexity, Since memory is becoming more & cheaper,...

Since memory is becoming more & cheaper, the prominence of runtime complexity is enhancing. However, it is very much significant to analyses the amount of memory utilized by a prog

The threaded binary tree, By changing the NULL lines in a binary tree to th...

By changing the NULL lines in a binary tree to the special links called threads, it is possible to execute traversal, insertion and deletion without using either a stack or recursi

Create a binary tree , Create a class "box" that will contain a random inte...

Create a class "box" that will contain a random integer value v such that O

Array-based representation of a binary tree, Assume a complete binary tree ...

Assume a complete binary tree T with n nodes where each node has an item (value). Label the nodes of the complete binary tree T from top to bottom & from left to right 0, 1, ..., n

Graphs, c program to represent a graph as an adjacency multilist form

c program to represent a graph as an adjacency multilist form

Recursion, i need help in java recursion assignment.

i need help in java recursion assignment.

Storing street addresses with doubly linked lists, Write a C++ program with...

Write a C++ program with header and source les to store street addresses using the Doubly Linked List ADT. Modify the Node class from Lab Assignment 3 so that it becomes a node in

Write stream analogues of list processing functions, (a) Write (delay ) as...

(a) Write (delay ) as a special form for (lambda () ) and (force ), as discussed in class. (b) Write (stream-cons x y) as a special form, as discussed in class. (c) Write

Compound interest, Write the algorithm for compound interest

Write the algorithm for compound interest

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd