Rooted tree, Data Structure & Algorithms

Assignment Help:

It does not have any cycles (circuits, or closed paths), which would imply the existence of more than one path among two nodes. It is the most general kind of tree, and might be converted in the more familiar form though designating a node as the root. We can represent a tree like a construction containing nodes, and edges that represent a relationship among two nodes. In Figure, we will assume most common tree called rooted tree. A rooted tress has a single root node that has no parents.

349_rooted tree.png

Figure: A rooted tree

In more formal way, we can define tree T like a finite set of one or more nodes such that there is one designated node r called as the root of T, and the remaining nodes into (T - { r } ) are partitioned in n > 0 disjoint subsets T1, T2, ..., Tk  each of is a tree, and whose roots r1 , r2 , ..., rk , respectively, are children of r. The general tree is a generic tree which has one root node, and each node in the tree can have limitless number of child nodes. One popular employ of this kind of tree is a Family Tree.

A tree is an example of a more general category called graph.

  • A tree contains nodes connected by edges.
  • A root is node without parent.
  • Leaves are nodes having no children.
  • The root is at level 1. The child nodes of root are at level 2. The child nodes of nodes at level 2 are at level 3 and so forth.
  • The depth (height) of any Binary tree is equivalent to the number of levels in it.
  • Branching factor describe the maximum number of children to any node. Thus, a branching factor of 2 means a binary tree.
  • Breadth described the number of nodes at a level.
  • In a tree the depth of a node M is the length of the path from the root of the tree to M.
  • In a Binary tree a node has at most 2 children. The given are the properties of a Tree.

Full Tree: A tree having all the leaves at the similar level, and all the non-leaves having the similar degree

  • Level h of a full tree contains dh-1 nodes.
  • The first h levels of full tree have 1 + d + d2 + d3 + d4 + ....... + dh-1 = (dh -1)/(d - 1) nodes where d refer to the degree of nodes.
  • The number of edges = the number of nodes - 1 (Why? Because, an edge represents the relationship among a child & a parent, and every node has a parent except the root.
  • A tree of height h & degree d has at most d h - 1 element.

Related Discussions:- Rooted tree

Write a function that performs integer division, Write a function that perf...

Write a function that performs integer division. The function should take the large number in memory location 1 and divide it by the large number in memory location 2 disregarding

Graph terminologies, Graph terminologies : Adjacent vertices: Two vert...

Graph terminologies : Adjacent vertices: Two vertices a & b are said to be adjacent if there is an edge connecting a & b. For instance, in given Figure, vertices 5 & 4 are adj

Linked list, write an algorithm for multiplication of two sparse matrices u...

write an algorithm for multiplication of two sparse matrices using Linked Lists

Avl tree rotations, AVL trees and the nodes it contains must meet strict ba...

AVL trees and the nodes it contains must meet strict balance requirements to maintain O(log n) search time. These balance restrictions are kept maintained via various rotation func

Explain the term - branching, Explain the term - Branching There are t...

Explain the term - Branching There are two common ways of branching: case of ..... otherwise ...... endcase  if ..... then ..... else ..... endif   case of

Data structure, Ask question #Minimum 1Mark each of the following statement...

Ask question #Minimum 1Mark each of the following statements as valid or invalid. If a statement is invalid, explain why. a. current ¼ list; b. temp->link->link ¼ NULL; c. trail->l

Efficiency of linear search, Efficiency of Linear Search How much numbe...

Efficiency of Linear Search How much number of comparisons is there in this search in searching for a particular element? The number of comparisons based upon where the reco

Preorder traversal of a binary tree, Preorder traversal of a binary tree ...

Preorder traversal of a binary tree struct NODE { struct NODE *left; int value;     /* can take any data type */ struct NODE *right; };   preorder(struct N

Proof, prove that n/100=omega(n)

prove that n/100=omega(n)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd