Rooted tree, Data Structure & Algorithms

Assignment Help:

It does not have any cycles (circuits, or closed paths), which would imply the existence of more than one path among two nodes. It is the most general kind of tree, and might be converted in the more familiar form though designating a node as the root. We can represent a tree like a construction containing nodes, and edges that represent a relationship among two nodes. In Figure, we will assume most common tree called rooted tree. A rooted tress has a single root node that has no parents.

349_rooted tree.png

Figure: A rooted tree

In more formal way, we can define tree T like a finite set of one or more nodes such that there is one designated node r called as the root of T, and the remaining nodes into (T - { r } ) are partitioned in n > 0 disjoint subsets T1, T2, ..., Tk  each of is a tree, and whose roots r1 , r2 , ..., rk , respectively, are children of r. The general tree is a generic tree which has one root node, and each node in the tree can have limitless number of child nodes. One popular employ of this kind of tree is a Family Tree.

A tree is an example of a more general category called graph.

  • A tree contains nodes connected by edges.
  • A root is node without parent.
  • Leaves are nodes having no children.
  • The root is at level 1. The child nodes of root are at level 2. The child nodes of nodes at level 2 are at level 3 and so forth.
  • The depth (height) of any Binary tree is equivalent to the number of levels in it.
  • Branching factor describe the maximum number of children to any node. Thus, a branching factor of 2 means a binary tree.
  • Breadth described the number of nodes at a level.
  • In a tree the depth of a node M is the length of the path from the root of the tree to M.
  • In a Binary tree a node has at most 2 children. The given are the properties of a Tree.

Full Tree: A tree having all the leaves at the similar level, and all the non-leaves having the similar degree

  • Level h of a full tree contains dh-1 nodes.
  • The first h levels of full tree have 1 + d + d2 + d3 + d4 + ....... + dh-1 = (dh -1)/(d - 1) nodes where d refer to the degree of nodes.
  • The number of edges = the number of nodes - 1 (Why? Because, an edge represents the relationship among a child & a parent, and every node has a parent except the root.
  • A tree of height h & degree d has at most d h - 1 element.

Related Discussions:- Rooted tree

Two-dimensional array, Two-dimensional array is shown in memory in followin...

Two-dimensional array is shown in memory in following two ways:  1.  Row major representation: To achieve this linear representation, the first row of the array is stored in th

Kruskals algorithm, Krushkal's algorithm uses the concept of forest of tree...

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edg

Full binary trees, Full Binary Trees: A binary tree of height h that had 2...

Full Binary Trees: A binary tree of height h that had 2h -1 elements is called a Full Binary Tree. Complete Binary Trees: A binary tree whereby if the height is d, and all of

Program insertion of a node into any circular linked list, Program Insertio...

Program Insertion of a node into any Circular Linked List Figure depicts a Circular linked list from which an element was deleted. ALGORITHM (Deletion of an element from a

Several operations on a aa-tree, The following are several operations on a ...

The following are several operations on a AA-tree: 1. Searching: Searching is done using an algorithm which is similar to the search algorithm of a binary search tree. 2. Ins

Whether the infix expression has balanced parenthesis or not, Using stacks,...

Using stacks, write an algorithm to determine whether the infix expression has balanced parenthesis or not Algorithm parseparens This algorithm reads a source program and

Algorithm that inputs the codes for all items in stock, A shop sells books,...

A shop sells books, magazines and maps. Every item is identified by a unique 4 - digit code. All books have a code which starts with 1, all maps have a code starting with 2 and all

Cache simulator, how to design a cache simulator with 4-way set associative...

how to design a cache simulator with 4-way set associative cache

Tree structure, We would like to implement a 2-4Tree containing distinct in...

We would like to implement a 2-4Tree containing distinct integer keys. This 2-4Tree is defined by the ArrayList Nodes of all the 2-4Nodes in the tree and the special 2-4Node Root w

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd