Rooted tree, Data Structure & Algorithms

Assignment Help:

It does not have any cycles (circuits, or closed paths), which would imply the existence of more than one path among two nodes. It is the most general kind of tree, and might be converted in the more familiar form though designating a node as the root. We can represent a tree like a construction containing nodes, and edges that represent a relationship among two nodes. In Figure, we will assume most common tree called rooted tree. A rooted tress has a single root node that has no parents.

349_rooted tree.png

Figure: A rooted tree

In more formal way, we can define tree T like a finite set of one or more nodes such that there is one designated node r called as the root of T, and the remaining nodes into (T - { r } ) are partitioned in n > 0 disjoint subsets T1, T2, ..., Tk  each of is a tree, and whose roots r1 , r2 , ..., rk , respectively, are children of r. The general tree is a generic tree which has one root node, and each node in the tree can have limitless number of child nodes. One popular employ of this kind of tree is a Family Tree.

A tree is an example of a more general category called graph.

  • A tree contains nodes connected by edges.
  • A root is node without parent.
  • Leaves are nodes having no children.
  • The root is at level 1. The child nodes of root are at level 2. The child nodes of nodes at level 2 are at level 3 and so forth.
  • The depth (height) of any Binary tree is equivalent to the number of levels in it.
  • Branching factor describe the maximum number of children to any node. Thus, a branching factor of 2 means a binary tree.
  • Breadth described the number of nodes at a level.
  • In a tree the depth of a node M is the length of the path from the root of the tree to M.
  • In a Binary tree a node has at most 2 children. The given are the properties of a Tree.

Full Tree: A tree having all the leaves at the similar level, and all the non-leaves having the similar degree

  • Level h of a full tree contains dh-1 nodes.
  • The first h levels of full tree have 1 + d + d2 + d3 + d4 + ....... + dh-1 = (dh -1)/(d - 1) nodes where d refer to the degree of nodes.
  • The number of edges = the number of nodes - 1 (Why? Because, an edge represents the relationship among a child & a parent, and every node has a parent except the root.
  • A tree of height h & degree d has at most d h - 1 element.

Related Discussions:- Rooted tree

Define wire-frame model, Define Wire-frame Model This skeletal view is ...

Define Wire-frame Model This skeletal view is called a Wire-frame Model. Although not a realistic representation  of the object, it is still very useful in the early stages of

Algorithm for sorting a deck of cards, What is wrong with the following alg...

What is wrong with the following algorithm for sorting a deck of cards (considering the basic properties of algorithms)? I. Put the cards together into a pile II. For each ca

COBOL, write a COBOL program to find the biggest of two numbers

write a COBOL program to find the biggest of two numbers

Describe data structure?, Typical programming languages such as Pascal, C o...

Typical programming languages such as Pascal, C or Java give primitive data kinds such as integers, boolean, reals values and strings. They give these to be organised into arrays,

Non-recursive implementation of binary tree traversals, As we have seen, as...

As we have seen, as the traversal mechanisms were intrinsically recursive, the implementation was also easy through a recursive procedure. Though, in the case of a non-recursive me

Data structures, Aa) Come up with an ERD from the following scenario, clear...

Aa) Come up with an ERD from the following scenario, clearly stating all entities, attributes, relationships before final sketch of the ERD: [50 m

Explain almost complete binary tree, Almost Complete Binary Tree :-A binary...

Almost Complete Binary Tree :-A binary tree of depth d is an almost whole binary tree if: 1.Any node and at level less than d-1 has two children. 2. for any node and in the tree wi

Push and pop operations, Q. Explain that how do we implement two stacks in ...

Q. Explain that how do we implement two stacks in one array A[1..n] in such a way that neither the stack overflows unless the total number of elements in both stacks together is n.

Stack making use of the linked list, Q. Implement a stack making use of the...

Q. Implement a stack making use of the linked list. Show the PUSH and POP operations both. A n s . Stack implemantation using linked list # include # include

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd