Root of function, Mathematics

Assignment Help:

Root of function: All throughout a calculus course we will be determining roots of functions.  A root of function is number for which the function is zero.  In other terms, determining the roots of a function, g(x), is equal to solving

                                                      g ( x ) = 0

Example: Find out all the roots of

                       f (t ) = 9t 3 -18t + + 6t

Solution :

Thus we will have to solve,

9t 3 -18t 2 + 6t = 0

Firstly, we have to factor the equation as much as possible.  Doing this gives,

                                  3t (3t 2 - 6t + 2) = 0

Next if a product of two things are zero then one (or both) of them must be zero. It means that,

                  3t = 0         OR,

                   3t 2 - 6t +2 = 0

From the first it's apparent that one of the roots have to then be t=0. To get the remaining roots we will have to use the quadratic formula on the second equation.  Doing this gives,

1147_function notation.png

= (6±√12 )/6

= (6±√(4)(3)) /6

= (6±2√3)/6

=3±√3/3

=1±(1/3) √3

= 1±1/√3

In order to remind you how to make simpler radicals we gave various forms of the answer.

To calculate the problem, following is a complete list of all the roots of this function.

                                  t = 0, t =( 3 + √3 )/3 , t = (3 -  √3 )/3

Note we didn't employ the final form for the roots from the quadratic. It is usually where we'll stop along with the simplification for these types of roots.  Also note that, for practice, we broke up the compact form for the two roots of the quadratic.  You will have to be able to do this so ensure that you can.

This example had a couple of points other than determining roots of functions.

The first was to remind you of the quadratic formula. it won't be the last time that you'll required it

The second was to get you utilized to seeing "messy" answers.  Actually, the answers in the above list are not that messy.  Though, most of the students come out of an Algebra class very habitual to seeing only integers and the occasional "nice" fraction as answers.

Hence, here is fair warning .In "real life" (whatever that is) the answer is hardly ever a simple integer such as two.  In most of the problems the answer will be a decimal that came about from a messy fraction and/or an answer that involved radicals.


Related Discussions:- Root of function

Find the length of the parallelogram, The perimeter of a parallelogram is 5...

The perimeter of a parallelogram is 50 cm. The length of the parallelogram is 5 cm more than the width. Find the length of the parallelogram. Let w = the width of the parallelo

Compute the essential matrix and epipolar lines , 1. In Figure there are th...

1. In Figure there are three cameras where the distance between the cameras is B, and all three cameras have the same focal length f. The disparity dL = x0 - xL, while the disparit

What percent of her money did she spend on lunch, Wendy brought $16 to the ...

Wendy brought $16 to the mall. She spent $6 on lunch. What percent of her money did she spend on lunch? Divide $6 by $16 to ?nd out the percent; $6 ÷ $16 = 0.375; 0.375 is equi

Solve the second order differential equations, Solve the subsequent IVP ...

Solve the subsequent IVP Y'' - 9 y = 0, y(0) = 2, y'(0) = -1 Solution First, the two functions  y (t ) = e 3t  and  y(t ) = e -3t That is "nice enough" for us to

Mensuration, find the diameter of circle whose circumference is 26.51

find the diameter of circle whose circumference is 26.51

Area related to circles, railway tunnel of radius 3.5 m and angle aob =90 f...

railway tunnel of radius 3.5 m and angle aob =90 find height of the tunnel

Calculus online, need help completing my online text. can provide login det...

need help completing my online text. can provide login details

Determine the volume of the hollowed solid, A cylindrical hole with a radiu...

A cylindrical hole with a radius of 4 inches is cut through a cube. The edge of the cube is 5 inches. Determine the volume of the hollowed solid in terms of π. a. 125 - 80π

Problems with applying algorithms , PROBLEMS WITH APPLYING ALGORITHMS :  F...

PROBLEMS WITH APPLYING ALGORITHMS :  From your experience, you would agree that children are expected to mechanically apply the algorithms for adding or subtracting numbers, regar

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd