Root of function, Mathematics

Assignment Help:

Root of function: All throughout a calculus course we will be determining roots of functions.  A root of function is number for which the function is zero.  In other terms, determining the roots of a function, g(x), is equal to solving

                                                      g ( x ) = 0

Example: Find out all the roots of

                       f (t ) = 9t 3 -18t + + 6t

Solution :

Thus we will have to solve,

9t 3 -18t 2 + 6t = 0

Firstly, we have to factor the equation as much as possible.  Doing this gives,

                                  3t (3t 2 - 6t + 2) = 0

Next if a product of two things are zero then one (or both) of them must be zero. It means that,

                  3t = 0         OR,

                   3t 2 - 6t +2 = 0

From the first it's apparent that one of the roots have to then be t=0. To get the remaining roots we will have to use the quadratic formula on the second equation.  Doing this gives,

1147_function notation.png

= (6±√12 )/6

= (6±√(4)(3)) /6

= (6±2√3)/6

=3±√3/3

=1±(1/3) √3

= 1±1/√3

In order to remind you how to make simpler radicals we gave various forms of the answer.

To calculate the problem, following is a complete list of all the roots of this function.

                                  t = 0, t =( 3 + √3 )/3 , t = (3 -  √3 )/3

Note we didn't employ the final form for the roots from the quadratic. It is usually where we'll stop along with the simplification for these types of roots.  Also note that, for practice, we broke up the compact form for the two roots of the quadratic.  You will have to be able to do this so ensure that you can.

This example had a couple of points other than determining roots of functions.

The first was to remind you of the quadratic formula. it won't be the last time that you'll required it

The second was to get you utilized to seeing "messy" answers.  Actually, the answers in the above list are not that messy.  Though, most of the students come out of an Algebra class very habitual to seeing only integers and the occasional "nice" fraction as answers.

Hence, here is fair warning .In "real life" (whatever that is) the answer is hardly ever a simple integer such as two.  In most of the problems the answer will be a decimal that came about from a messy fraction and/or an answer that involved radicals.


Related Discussions:- Root of function

Operations and properties, use an expression to write an expression with fi...

use an expression to write an expression with five 3s that has a value of 0

construct an isosceles triangle, 1. Construct an isosceles triangle whose ...

1. Construct an isosceles triangle whose base is 7cm and altitude 4cm and then construct another similar triangle whose sides are 1/2 times the corresponding sides of the isosceles

What is the value of m+n, Every point (x,y) on the curve y=log2 3x is trans...

Every point (x,y) on the curve y=log2 3x is transferred to a new point by the following translation (x',y')=(x+m,y+n), where m and n are integers. The set of (x',y') form the curve

Profit, A wholesaler allows a discount of 20% on the list price to a retail...

A wholesaler allows a discount of 20% on the list price to a retailer. The retailer sells at 5% discount on the list price.If a customer paid Rs 114 for an article,what profit is m

If tan2x.tan7x=1 , tan9x = (tan7x + tan2x)/(1 - tan7x*tan2x) here its give...

tan9x = (tan7x + tan2x)/(1 - tan7x*tan2x) here its given 1 - tan2x*tan7x= 0 implies tan9x = infinity since tan9x = (3tan3x - tan^3(3x))/(1 - 3tan^2 (3x)) = infinity implies

Rules of game theory, Rules Of Game Theory i.   The number of competito...

Rules Of Game Theory i.   The number of competitors is finite ii.   There is conflict of interests among the participants iii.  Each of these participants has available t

Bits, What is the largest number (in decimal) that can be made with 6 bits?...

What is the largest number (in decimal) that can be made with 6 bits?

Permutations and combinations, How many arrangements can be made from the l...

How many arrangements can be made from the letters of the word " VENUS " such that the order of the vowels remains the same?

Solution to a differential equation, A solution to a differential equation ...

A solution to a differential equation at an interval α Illustration 1:   Show that y(x) = x -3/2 is a solution to 4x 2 y′′ + 12xy′ + 3 y = 0 for x > 0. Solution : We'll

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd