Rolles theorem, Mathematics

Assignment Help:

Rolle's Theorem

 Assume f(x) is a function which satisfies all of the following.

1. f(x) is continuous in the closed interval [a,b].

2. f(x) is differentiable in the open interval (a,b).

3. f(a)  = f(b)

So, there is a number c as a < c < b and f′(c) = 0. Or, though f(x) has a critical point in (a,b).

 


Related Discussions:- Rolles theorem

Value of perfect information, Value of perfect information This relates...

Value of perfect information This relates to the amount that we would pay for an item of information such would enable us to forecast the exact conditions of the market and act

Draw tangent graph y = sec ( x ), G raph y = sec ( x ) Solution: As wi...

G raph y = sec ( x ) Solution: As with tangent we will have to avoid x's for which cosine is zero (recall that sec x =1/ cos x) Secant will not present at

Emi, calculation of emi %

calculation of emi %

Who made clothes for, on april 26, jonh dough wrote a check#374 to Miller P...

on april 26, jonh dough wrote a check#374 to Miller Pharmacy for $16.00 , is this a deposit or withdrawal

Calculate the gross pay, 1. Simon's monthly take home pay (after taxes) is ...

1. Simon's monthly take home pay (after taxes) is $2200, if he pays 19%  of his gross pay(before taxex) in tax, what is his gross pay? 2 . Convert the following quantities to th

Illustrate child ability to perform a math task, Give an example to illustr...

Give an example to illustrate how language incompetence can interfere with a child's ability to perform a task. While setting up a classification activity, a teacher gave the ch

Marketing orientation, what marketing orientation is kelloggs influenced by...

what marketing orientation is kelloggs influenced by?why do you think kelloggs use this approach?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd