Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Reverse Recovery Characteristics
At the end of forward conduction in diode reverse current flows for a short time. The device doesn't attain its full blocking capability until the reverse current cease. The reverse current flows in the interval called reverse recovery time. During this time charge carriers stored in the diode at the end of forward conduction are removed. Actually when a power diode has been conduction in the forward direction sufficiently long to establish the steady state there will be a charge due to minority carriers present. Before the device can block in the reverse direction this charge must be extracted.
This extraction takes the from of a transient reverse current and this together with the reverse bias voltage results in additional power dissipation which reduces the rectification efficiency. Reverse recovery time is measured instant the current recovers to 25% of its peak reverse value. low reverse state forward current and low reverse bias voltage increase recovery time. High rate of all of anode current reduces recovery time but increase stored charge. High junction temperature is increase both recovery time and stored charge.
There are two parts of reverse recovery time. One is the time between zero crossing of forward current and peak reverse current. During this time period, charges stored in depletion region is removed. The other part of t measured form the instant of peak reverse current to the instant where 25% of peak reverse current is reached. During this time period charges from the two semiconductor layer are removed.
The shaded area in figure represents the stored charge or reverse recovery charge which must be removed during the reverse recovery time. The ration ½ is known as softness factor. Voltages transient occurs during the time diode recovers is measured by the factor.
b. forward voltage drop vf and forward current if gives the power loss in a diode. The total power loss in given by average value of V f i f during time t2 major power loss occurs in a diode. As shown in figure peak reverse current IFP is given by
I = RP = t1 di/ dt
Where Do/ dt is the rate of rise of reverse current. If the reverse recovery characteristics is assumed as a triangle shape then storage charge Q can be written as .
Q = ( ½) (IRP ) (t rr).
Active-mode NPN transistors in circuits Figure: Structure and use of NPN transistor. Arrow according to schematic. The figure opposite is a schematic presentation
Q. Explain Digital Signal Formatting? After quantization and coding the samples of the message, a suitable waveform has to be chosen to represent the bits. This waveformcan the
Explain n - Type semiconductor. n - Type semiconductor:- (i) If small amount of pentavalent impurity is added with, to a pure semiconductor giving a large number of free
Q. A separately excited dc generator with an armature-circuit resistance Ra is operating at a terminal voltage Vt, while delivering an armature current Ia, and has a constant loss
Q. Show NPN Common Emitter Amplifier? The common emitter configuration lends itself to voltage amplification and is the most common configuration for transistor amplifiers.
Work must be done against the electromagnetic torque in order to generate the voltage (and current) supplied to the electrical load connected to the generator. Therefore energy con
Q. Explain about Rotating Machines? Themost widely used electromechanical device is a rotatingmachine, which utilizes themagnetic field to store energy. The main purpose of mos
Give classification of plastics and also the differences between them. Plastics are materials (containing carbon as common element) that have organic substances of high mol
Describe the construction and working of atleast two types of storage CRO
role of trigger circuit in cro
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd