Revenue and profit functions, Mathematics

Assignment Help:

Now let's move onto the revenue & profit functions.

Demand function or the price function

Firstly, let's assume that the price which some item can be sold at if there is a demand for x units is specified by p (x ) . This function is typically called either the demand function or the price function

Revenue function

Then the revenue function is how much money is made through selling x items and is,

                                                       R ( x ) = x p ( x )

The profit function is then,

P ( x )= R ( x ) - C ( x ) = x p ( x ) - C ( x )

Be careful to not confuse the demand function, p ( x ) - lower case p, & the profit function, P ( x ) - upper case P. Bad notation possibly, but there it is.

marginal revenue function

the marginal revenue function is R′ ( x ) and

Profit function

The marginal profit function is P′ ( x)

and these revel the revenue & profit respectively if one more unit is sold.

Let's take a quick look at an example of using these.

Example  The weekly cost to generate x widgets is specified by

C ( x ) = 75, 000 + 100 x - 0.03x2 + 0.000004 x3            0 ≤ x ≤ 10000

and the demand function for the widgets is specified by,

p ( x ) = 200 - 0.005x                           0 ≤ x ≤ 10000

 Find out the marginal cost, marginal revenue & marginal profit while 2500 widgets are sold and while 7500 widgets are sold. Suppose that the company sells accurately what they produce.

Solution

The first thing we have to do is get all the several functions which we'll require. Following are the revenue & profit functions.

R ( x ) = x ( 200 - 0.005x ) =200 x - 0.005x2

P ( x ) = 200x - 0.005x2 - (75, 000 + 100x - 0.03x2+ 0.000004x3 )

= -75, 000 + 100 x + 0.025x2 - 0.000004 x3

Now, all the marginal functions are following,

C′ ( x ) = 100 - 0.06 x + 0.000012 x2

R′ ( x ) =200 - 0.01x

P′ ( x ) = 100 + 0.05x - 0.000012x2

The marginal functions while 2500 widgets are sold are following,

C′ ( 2500) = 25        R′ ( 2500) = 175                  P′ ( 2500) = 150

The marginal functions while 7500 are sold are following

C′ (7500) = 325           R′ (7500) = 125               P′ (7500) = -200

Therefore, upon producing & selling the 2501st widget it will cost the company approximately $25 to generate the widget and they will illustrates an added $175 in revenue and $150 in profit.

Alternatively while they generate and sell the 7501st widget it will cost an additional $325 and they will attain an extra $125 in revenue, however lose $200 in profit.


Related Discussions:- Revenue and profit functions

Complex number, a ,b,c are complex numbers such that a/1-b=b/1-c=c-1-a=k.fi...

a ,b,c are complex numbers such that a/1-b=b/1-c=c-1-a=k.find the value of k

Assignment, Is there any assignment work available for mathematics?

Is there any assignment work available for mathematics?

What are the characteristics of a queuing system, What are the characterist...

What are the characteristics of a queuing system?  (i) The input pattern  (ii) The queue discipline  (iii) The service mechanism

Topological spease, let X be a nonempty set. let x belong to X. show that t...

let X be a nonempty set. let x belong to X. show that the collection l={ union subset of X : union = empty or belong U

Trigonometry, Prove: 1/cos2A+sin2A/cos2A=sinA+cosA/cosA-sinA

Prove: 1/cos2A+sin2A/cos2A=sinA+cosA/cosA-sinA

Properties of dot product - proof, Properties of Dot Product - proof P...

Properties of Dot Product - proof Proof of: If v → • v → = 0 then v → = 0 → This is a pretty simple proof.  Let us start with v → = (v1 , v2 ,.... , vn) a

Find out the mean wait in line - probability, Example of Probability I...

Example of Probability Illustration:  It has been determined that the probability density function for the wait in line at a counter is specified by, In which t is the

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd