Requirement of temperature scale - thermodynamics, Mechanical Engineering

Assignment Help:

Requirement of Temperature Scale:

The temperature scale on which temperature of the system can be read is required to assign the numerical values to the thermal state of the system. It requires the selection of basic unit and reference state.

Establish a correlation between Centigrade and Fahrenheit temperature scales.
Sol:
Let the temperature't' be linear function of property x. (x can be length, resistance volume, pressure etc.) Then by using equation of Line;

t = A.x + B                                                                                                                         ...(i)

At Ice Point for Centigrade scale t = 0°, then

0 = A.xi  +B                                                                                                                         ...(ii)

At steam point for centigrade scale t = 100°, then

100 =A.x S + B                                                                                                                      ...(iii)

From equation (iii) and (ii), we get

a = 100/(xs - xi ) and b = -100xi/(xs  - xi) Finally equation becomes in centigrade scale is;

t0 C = 100x/(xs  - xi ) -100xi/(xs  - xi)

t0 C = [(x - xi )/ (xs  - xi )]100                                                                                           ...(iv)

Likewise if Fahrenheit scale is used, then

At Ice Point for Fahrenheit scale t = 32°, then

32 = A.xi  + B                                                                                                                        ...(v)

At steam point for Fahrenheit scale t = 212°, then

212 =A.xS + B                                                                                                                       ...(vi)

From equation (v) and (vi), we get

a = 180/(xs  - xi ) and b = 32 - 180xi/(xs  - xi) Finally general equation becomes in Fahrenheit scale is;

t0 F = 180x/(xs  - xi ) + 32 - 180xi/(xs  - xi)

t0 F = [(x - xi )/ (xs  - xi )]180 + 32                                                                                ...(vii)

Likewise if Rankine scale is used, then

At Ice Point for Rankine scale t = 491.67°, then

491.67 = A.xi  + B                                                                                                                    ...(viii)

At steam point Rankine scale t = 671.67°, then

671.67 = A.xS + B                                                                                                                      ...(ix)

From equation (viii) and (ix), we get

a = 180/(xs  - xi ) and b = 491.67 - 180xi/(xs  - xi) Finally equation becomes in Rankine scale is;

t0 R = 180×/(xs  - xi ) + 491.67 - 180xi/(xs  - xi)

t0 R = [(x - xi )/ (xs  - xi )] 180 + 491.67                                                                        ...(x)

Likewise if Kelvin scale is used, then

At Ice Point for Kelvin scale t = 273.15°, then

273.15 = A.xi  + B                                                                                                                      ...(xi)

At steam point Kelvin scale t = 373.15°, then

373.15 = A.xS + B                                                                                                                     ...(xii)

From equation (xi) and (xii), we get

a = 100/(xs  - xi ) and b = 273.15 - 100xi/(xs  - xi) Finally equation becomes in Kelvin scale is;

t0 K = 100x/(xs  - xi ) + 273.15 - 100xi/(xs  - xi)

t0 K = [(x - xi )/ (xs  - xi )] 100 + 273.15                                                                    ...(xiii)

Now compare between above four scales:

(x - xi )/ (xs  - xi ) = C/100                                                                                           ...(A)

= (F-32)/180                                                                                                                ...(B)

= (R-491.67)/180                                                                                                         ...(C)

= (K - 273.15)/100                                                                                                     ...(D)

Now joining all 4 values we get following relation

K = C + 273.15

C = 5/9[F - 32]

= 5/9[R - 491.67] F = R - 459.67

= 1.8C + 32

 


Related Discussions:- Requirement of temperature scale - thermodynamics

Can you explain investment casting, Q. Can you explain Investment casting? ...

Q. Can you explain Investment casting? -Investment casting produces very high surface quality and dimensional accuracy. -Investment casting is commonly used for precision eq

Dry friction, Dry Friction: Dry friction (also called as coulomb fr...

Dry Friction: Dry friction (also called as coulomb friction manifests when the contact surfaces are dry and there is tendency for the relative motion. Dry friction is fu

Calculate force required for equilibrium, Calculate force required for equi...

Calculate force required for equilibrium: A member ABCD is subjected to the point loads P 1 , P 2 , P 3   an d P 4   as shown in the figure given below

What is the density of plastic, Plastics are the common term for a wide ran...

Plastics are the common term for a wide range of synthetic or semi synthetic polymerization products. There are many dissimilar plastics; all have their own density!

Cad-cam data exchange, CAD-CAM Data Exchange: The interface SET transf...

CAD-CAM Data Exchange: The interface SET transferred information on wire-frames, surfaces, B-representation and FEM models as well as technical drawings and scientific data. I

Find out the deflection - vertical, Find out the deflection: Find out ...

Find out the deflection: Find out the deflection (vertical) at a distance 'a' from the tip in Example Solution As in this case there is no load at the point where the

Determine the work transfer, (a) Derive the mathematical expression for Ste...

(a) Derive the mathematical expression for Steady Flow Energy Equation. State the assumption made before the derivation. (b) The internal energy of a substance is provided by th

Modulus of elasticity, Explain Young's Modulus or Modulus of elasticity? ...

Explain Young's Modulus or Modulus of elasticity? Sol. : It is ratio between tensile stress and tensile strain or compressive stress and compressive strain. It can be denote

What is the initial velocity of the ball, What is the initial velocity of t...

What is the initial velocity of the ball: A ball is horizontally thrown from the top of a building 60 m height, hits the horizontal ground 25 m from the base of the building a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd