Requirement of temperature scale - thermodynamics, Mechanical Engineering

Assignment Help:

Requirement of Temperature Scale:

The temperature scale on which temperature of the system can be read is required to assign the numerical values to the thermal state of the system. It requires the selection of basic unit and reference state.

Establish a correlation between Centigrade and Fahrenheit temperature scales.
Sol:
Let the temperature't' be linear function of property x. (x can be length, resistance volume, pressure etc.) Then by using equation of Line;

t = A.x + B                                                                                                                         ...(i)

At Ice Point for Centigrade scale t = 0°, then

0 = A.xi  +B                                                                                                                         ...(ii)

At steam point for centigrade scale t = 100°, then

100 =A.x S + B                                                                                                                      ...(iii)

From equation (iii) and (ii), we get

a = 100/(xs - xi ) and b = -100xi/(xs  - xi) Finally equation becomes in centigrade scale is;

t0 C = 100x/(xs  - xi ) -100xi/(xs  - xi)

t0 C = [(x - xi )/ (xs  - xi )]100                                                                                           ...(iv)

Likewise if Fahrenheit scale is used, then

At Ice Point for Fahrenheit scale t = 32°, then

32 = A.xi  + B                                                                                                                        ...(v)

At steam point for Fahrenheit scale t = 212°, then

212 =A.xS + B                                                                                                                       ...(vi)

From equation (v) and (vi), we get

a = 180/(xs  - xi ) and b = 32 - 180xi/(xs  - xi) Finally general equation becomes in Fahrenheit scale is;

t0 F = 180x/(xs  - xi ) + 32 - 180xi/(xs  - xi)

t0 F = [(x - xi )/ (xs  - xi )]180 + 32                                                                                ...(vii)

Likewise if Rankine scale is used, then

At Ice Point for Rankine scale t = 491.67°, then

491.67 = A.xi  + B                                                                                                                    ...(viii)

At steam point Rankine scale t = 671.67°, then

671.67 = A.xS + B                                                                                                                      ...(ix)

From equation (viii) and (ix), we get

a = 180/(xs  - xi ) and b = 491.67 - 180xi/(xs  - xi) Finally equation becomes in Rankine scale is;

t0 R = 180×/(xs  - xi ) + 491.67 - 180xi/(xs  - xi)

t0 R = [(x - xi )/ (xs  - xi )] 180 + 491.67                                                                        ...(x)

Likewise if Kelvin scale is used, then

At Ice Point for Kelvin scale t = 273.15°, then

273.15 = A.xi  + B                                                                                                                      ...(xi)

At steam point Kelvin scale t = 373.15°, then

373.15 = A.xS + B                                                                                                                     ...(xii)

From equation (xi) and (xii), we get

a = 100/(xs  - xi ) and b = 273.15 - 100xi/(xs  - xi) Finally equation becomes in Kelvin scale is;

t0 K = 100x/(xs  - xi ) + 273.15 - 100xi/(xs  - xi)

t0 K = [(x - xi )/ (xs  - xi )] 100 + 273.15                                                                    ...(xiii)

Now compare between above four scales:

(x - xi )/ (xs  - xi ) = C/100                                                                                           ...(A)

= (F-32)/180                                                                                                                ...(B)

= (R-491.67)/180                                                                                                         ...(C)

= (K - 273.15)/100                                                                                                     ...(D)

Now joining all 4 values we get following relation

K = C + 273.15

C = 5/9[F - 32]

= 5/9[R - 491.67] F = R - 459.67

= 1.8C + 32

 


Related Discussions:- Requirement of temperature scale - thermodynamics

How is angle of dispersion used in footing, How is angle of dispersion used...

How is angle of dispersion used in footing? Angle of Dispersion Indian Standards (IS) has specified relation for determining the angle, of dispersion. According to IS the an

Mechanics of materials, how to find bending moment diagram of cantilever be...

how to find bending moment diagram of cantilever beam.any formula

Types of coated electrodes-iron powder electrodes, Iron Powder Electrodes ...

Iron Powder Electrodes Iron powder is a widely used covering ingredient. It is incorporated in certain coverings to the extent of one half of the total weight. Iron Powder impart

Spinal fluid collection, Spinal fluid Collection:    Spinal fluid is u...

Spinal fluid Collection:    Spinal fluid is usually obtained from lumbar region, although may be obtained during surgery from the cervical region or from the cistern or ventri

Turnning fixtures, what are the forces acting on workpiece during turning p...

what are the forces acting on workpiece during turning process. how workpiece should be clamp

Determine the machining time in milling operation, Determine the Machining ...

Determine the Machining Time in Milling Operation An HSS slab mill of 100 mm diameter and 150 mm width is used on a Horizontal milling machine to mill C50 steel. The milling c

Cobalt-base super alloys, Cobalt-base super alloys (e.g. UNS R30155 (Grade ...

Cobalt-base super alloys (e.g. UNS R30155 (Grade 661) and R30816 (Grade 671)) have superior strength to the nickel base alloys above 1800°F (980°C). The refractory metal alloys

What are the special considerations in planning, What are the Special Consi...

What are the Special Considerations in Planning The dimensions of the foundation should be such that for low-speed machines (operating speed less than 500  rpm) the natural fre

Frames, Frames: You have been introduced to the analysis of frames. By...

Frames: You have been introduced to the analysis of frames. By going through this unit, you may identify frames and differentiate them from trusses. The method for analyzing f

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd