Repeated eigenvalues, Mathematics

Assignment Help:

It is the last case that we require to take a look at. During this section we are going to look at solutions to the system,

x?' = A x?

Here the eigenvalues are repeated eigenvalues. As we are going to be working with systems wherein A is a 2x2 matrix we will create this assumption from the start. Therefore the system will have a double eigenvalue, l.

It presents us with a problem. We need two linearly independent solutions hence we can form a general solution. Though, with a double eigenvalue we will have only one,

x? = ?h elt

Therefore, we need to come up along with a second solution. Recall this when we looked at the double root case along with the second order differential equations we ran in a same problem. In those sections we simply added a t to the solution and were capable to get a second solution. Let's notice if similar thing will work into this case as well.  We'll notice if,

x? = t elt  ?h

It will also be a solution.

To check all we want to do is plug in the system.  Keep in mind to product rule the proposed solution while you differentiate!

?h elt+ l t elt  ?h = A t elt  ?h

Here, we got two functions this time on the left side, an exponential through itself and exponential times a t. Therefore, in order for our guess to be a solution we will require to need,

A ?h=l ?h           ⇒         (A - lI) ?h= ?0

?h = ?0

The first requirement isn't a problem as this just says as l is an eigenvalue and its eigenvector is ?h. We already identified this therefore there's nothing new there. The second though is a problem. As ?h is an eigenvector we know that this can't be zero, even in order to satisfy the second condition this would have to be.

Therefore, our guess was incorrect.  The problem appears to be that there is a lone term with just an exponential into it ?hlet's see if we can't fix up our guess to accurate that. Let's try the subsequent guess.

x? = t elt  ?h +  elt?r

Here ?ris an unknown vector which we'll need to find out.

As with the first guess here we plug this in the system and notice what we get.

1741_REPEATED EIGENVALUES.png

Above is again set coefficients equal is shown.

As along with our first guess the first equation gives us nothing which we didn't already know. Now there the second equation is not a problem. Each the second equation gives us that ?r must be a solution to that equation.

It seems our second guess worked. So,

x? 2= t elt  ?h +  elt?r

It will be a solution to the system provided ?r  is a solution to;

(A - lI) ?r =  ?h

Also above solution and the first solution are linearly independent and therefore they form a fundamental set of solutions and therefore the general solution in the double eigen-value case is,

x?(t) = c1 el1t  ?h + c2 (lel2t  ?h+  elt?r)


Related Discussions:- Repeated eigenvalues

Sales Tax and Value added Tax, Dinesh bought an article for Rs. 374, which ...

Dinesh bought an article for Rs. 374, which included a discount of 15% on the marked price and a sales tax of 10% on the reduced price. Find the marked price of the article.

Strategy for series - sequences and series, Strategy for Series Now t...

Strategy for Series Now that we have got all of our tests out of the way it's time to think regarding to the organizing all of them into a general set of strategy to help us

Invoices and trade discounts, Natureland garden center buys lawn mowers tha...

Natureland garden center buys lawn mowers that list for $679.95 less a 30% discount. What is the dollar amount of the discount?

Las leyes de kepler, la expresión que permite calcular el radio medio de la...

la expresión que permite calcular el radio medio de la órbita de cada planeta es?

Mortgages, compute the monthly payment on a 30 year level payment mortagage...

compute the monthly payment on a 30 year level payment mortagagesasuming an annual mortgages principal of $400000

Real analysis, .find lim sup Ek and liminf Ek of Ek=[(-(1/k),1] for k odd a...

.find lim sup Ek and liminf Ek of Ek=[(-(1/k),1] for k odd and liminf Ek=[(-1,(1/k)] for k even

Please solve this question, The number of integral pairs (x,y) satisfying t...

The number of integral pairs (x,y) satisfying the equation x^2=y^2+1294 is a)2 b)3 c)4 d)None of these

Intermediate value theorem, Intermediate Value Theorem Suppose that f(x...

Intermediate Value Theorem Suppose that f(x) is continuous on [a, b] and allow M be any number among f(a) and f(b).   There then exists a number c such that, 1. a 2. f (

Interpretations of the derivative , Interpretations of the Derivative : ...

Interpretations of the Derivative : Before moving on to the section where we study how to calculate derivatives by ignoring the limits we were evaluating in the earlier secti

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd