Relative maximum point, Mathematics

Assignment Help:

Relative maximum point

The above graph of the function slopes upwards to the right between points C and A and thus has a positive slope among these two points. The function has a negative slope between points E and C. So at point C, the slope of the function is Zero.

Among points X1 and X2    ((dy)/(dx)) > 0; whereas X1 ≤ X < X2

And among X2 and X3   ((dy)/(dx)) < 0; Whereas X2 < X ≤ X3.

Therefore the first test of the maximum points which needs that the first derivative of a function equals zero or

(dy)/(dx) = f'(x) < 0

The second text of a maximum point which needs that the second derivative of a function is negative or

            (d2y)/(dx2) = f''(x) < 0

 

Illustration

Find out the critical value for the given functions and determine the critical value that constitutes a maximum

            y = x3 - 12x2 + 36x + 8

Solution

            y = x3 - 12x2 + 36x + 8

            Then    (dy)/(dx) = 3x2 - 24x + 36 +0

i.                    The critical values for the function are acquired by equating the first derivative of the function to zero, which is as:

(dy)/(dx) =  0 or 3x2 - 24x + 36 = 0

Thus (x-2) (x-6) = 0

And also x = 2 or 6

The critical values for x are x = 2 or may be 6 and critical values for the function are y = 40 or maybe 8

i.                    To ascertain where these critical values of x will provides rise to a maximum that we apply the second text, which is :

(d2y)/( d2x)       < 0

(dy)/(dx) = 3x2 - 24x + 36 and

(d2y)/(d2x) = 6x - 24

a)      When x = 2

Then    (d2y)/( d2x)    = -12 <0

 

b)      When x = 6

Then    (d2y)/( d2x)    = +2 > 0

Therefore a maximum occurs when x = 2, as this value of x satisfies the second condition. X = 6 does not provides rise to a local maximum


Related Discussions:- Relative maximum point

Word problem, a recipe good for 4 servings require 1/8 tsp. black pepper an...

a recipe good for 4 servings require 1/8 tsp. black pepper and 1/2 tsp. of salt. how much black pepper and how much salt needed for 2 servings?

Derive the hicksian demand function using indirect utility , (a) Derive the...

(a) Derive the Marshalian demand functions and the indirect utility function for the following utility function: u(x1, x2, x3) = x1 1/6 x2 1/6 x3 1/6    x1≥ 0, x2≥0,x3≥ 0

LINEAR PROGRAMMING, Richland Health has three hospitals in the greater Tamp...

Richland Health has three hospitals in the greater Tampa, Florida area. Demand for patient services varies considerably during the fall and winter months due to the temporary influ

Alcohol Solutions, If you have 60% alcohol and wish to dilute with water to...

If you have 60% alcohol and wish to dilute with water to make 12 liters 40% alcohol, How many liters of water should you add?

Find the radii of the two circles , The sum of the diameters of two circle...

The sum of the diameters of two circles is 2.8 m and their difference of circumferences is 0.88m. Find the radii of the two circles  (Ans: 77, 63) Ans:    d 1 + d 2 = 2.8 m=

Square and square root., the value of square root of 200multiplied by squar...

the value of square root of 200multiplied by square root of 5=

How to change improper fractions to mixed/ proper fractions, how do you cha...

how do you change an improper fraction to a mixed number or whole or proper

Additional rule- rules of probability, Additional Rule- Rules of Probabilit...

Additional Rule- Rules of Probability Additional rule is used to calculate the probability of two or more mutually exclusive events. In such circumstances the probability of t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd