Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Relative Frequency
This type of probability requires us to make some qualifications. We define probability of event A, occurring as the proportion of times A occurs, if we repeat the experiment several times under the same or similar conditions.
Example
Consider the following distribution of salaries in a finance company for February, 2002.
Salaries (Rs.)
Frequency
Relative Frequency (%)
2,000 - 5,000
2
4%
5,000 - 8,000
11
22%
8,000 - 11,000
18
36%
11,000 - 14,000
10
20%
14,000 - 17,000
7
14%
17,000 - 20,000
50
100%
For a subsequent month the salaries are likely to have the same distributions unless employees leave or have their salaries raised, or new people join. Hence we have the following probabilities obtained from the above relative frequencies.
Probability
These probabilities give the chance that an employee chosen at random will be in a particular salary class. For example, the probability of an employee's salary being Rs.5,000 - Rs.8,000 is 22%.
Cone - Three dimensional spaces The below equation is the general equation of a cone. X 2 / a 2 + y 2 /b 2 = z 2 /c 2 Here is a diagram of a typical cone. Not
The amount of particulate matter left in solution during a filtering process is given by the equation p(n) = 500(2) -0.8n , where n is the number of filtering steps. Find the amoun
1. Find the third and fourth derivatives of the function Y=5x 7 +3x-6-17x -3 2. Find the Tangent to the curve Y= 5x 3 +2x-1 At the point where x = 2.
the ratio of boys to girls in the sixth grade is 2:3 if there are 24 boys, how many are girls?
how to prove Decidability Theorem of Logic
Find the GCF of 70 and 112
A Stone is dropped from the top of the tower and travel 24.5 m in last second of its journey. the height of the tower is ...?
47x+33y=143
I need help with compound shapes
If ABC is an obtuse angled triangle, obtuse angled at B and if AD⊥CB Prove that AC 2 =AB 2 + BC 2 +2BCxBD Ans: AC 2 = AD 2 + CD 2 = AD 2 + (BC + BD) 2 = A
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd