Relation between 2-d euclidean system and homogeneous system, Computer Graphics

Assignment Help:

Relation between 2-D Euclidean system and Homogeneous coordinate system

Suppose that P(x,y) be any point in 2-D Euclidean system. In HCS, we add a third coordinate to the point. In place of (x,y), all points are represented via a triple (x,y,H) so H≠0; along with the condition as (x1,y1,H1)=(x2,y2,H2) ↔ x1/H1 = x2/H2 ; y1/H1 = y2/H2. In two dimensions the value of H is generally remained at 1 for simplicity. If we take H=0 now, then this presents point at infinity, which is generation of horizons.

The subsequent table demonstrates an association between 2-D Euclidean (Cartesian coordinate) system and Homogeneous coordinate system.

2-D Euclidian System                                        Homogeneous Coordinate System (HCS)

Any point (x,y)                         →                                             (x,y,1)

If (x,y,H) be any point in HCS(such that H≠0);

                                                                                    then (x,y,H)=(x/H,y/H,1), which is

(x/H,y/H)                        ←                                                                     (x,y,H)

Any one point (x,y) → (x+tx,y+ty) in 2-D Euclidian system. By using Homogeneous coordinate system, this translation transformation can be presented as (x,y,1) → (x+tx,y+ty,1). In two dimensions the value of H is generally maintained at 1 for simplicity. Here, we are capable to represent this translation transformation in matrix form as:

242_Relation between 2-D Euclidean (Cartesian) system and Homogeneous coordinate system 2.png

 (x',y',1)=(x,y,1)

P'h=Ph.Tv    

Here P'h and Ph   demonstrate here object points in Homogeneous Coordinates and Tv is termed as homogeneous transformation matrix for translation. Consequently, P'h, the new coordinates of a transformed object, can be determined by multiplying earlier object coordinate matrix, Ph, along with the transformation matrix for translation Tv.

The benefit of initiating the matrix form of translation is to simplify the operations on complicated objects which are, we can now build complicated transformations by multiplying the basic matrix transformations. Such process is termed as concatenation of matrices and the resulting matrix is frequently referred as the composite transformation matrix.


Related Discussions:- Relation between 2-d euclidean system and homogeneous system

Engineering-applications for computer animation, Engineering: CAD has alwa...

Engineering: CAD has always been an imperative tool in industry. For illustration in automobile design, CAD could be utilized to model a car. Although with the advent of computer

Representation schemes used in three dimensional object, What are the vario...

What are the various representation schemes used in three dimensional objects?  Boundary representation (B-res) - explain the 3 dimensional objects as a set of surfaces that se

Character generation, Ask question #Minimum how can we use stroke method me...

Ask question #Minimum how can we use stroke method method for character generation? 100 words accepted#

Carry out a perspective projection, Consider the line segment AB in 3-Dimen...

Consider the line segment AB in 3-Dimentional parallel to the z-axis along with end points A (- 5,4,2) and also B (5,-6,18). Carry out a perspective projection upon the X=0 plane;

Opengl, difference between gl,glu and glut

difference between gl,glu and glut

., Define the working procedure of CRT with diagram

Define the working procedure of CRT with diagram

High level techniques (motion generalized), High level techniques (motion g...

High level techniques (motion generalized) Techniques utilized to explain general motion behavior of any of graphic object, such techniques are algorithms or models utilized to

Viewing transformation, Viewing Transformation In previous section, we...

Viewing Transformation In previous section, we have discussed about the geometric transformations as Translation, Shearing, Reflection, Scaling and Rotation. Rotation, Reflect

Normalization transformation, Find the normalization transformation N, whic...

Find the normalization transformation N, which uses the rectangle W(1, 1); X(5, 3); Y(4, 5) and Z(0, 3) as a window and the normalized deice screen as viewpoint.

3D transformation, what are the steps involved in 3D transformation

what are the steps involved in 3D transformation

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd