Relation between 2-d euclidean system and homogeneous system, Computer Graphics

Assignment Help:

Relation between 2-D Euclidean system and Homogeneous coordinate system

Suppose that P(x,y) be any point in 2-D Euclidean system. In HCS, we add a third coordinate to the point. In place of (x,y), all points are represented via a triple (x,y,H) so H≠0; along with the condition as (x1,y1,H1)=(x2,y2,H2) ↔ x1/H1 = x2/H2 ; y1/H1 = y2/H2. In two dimensions the value of H is generally remained at 1 for simplicity. If we take H=0 now, then this presents point at infinity, which is generation of horizons.

The subsequent table demonstrates an association between 2-D Euclidean (Cartesian coordinate) system and Homogeneous coordinate system.

2-D Euclidian System                                        Homogeneous Coordinate System (HCS)

Any point (x,y)                         →                                             (x,y,1)

If (x,y,H) be any point in HCS(such that H≠0);

                                                                                    then (x,y,H)=(x/H,y/H,1), which is

(x/H,y/H)                        ←                                                                     (x,y,H)

Any one point (x,y) → (x+tx,y+ty) in 2-D Euclidian system. By using Homogeneous coordinate system, this translation transformation can be presented as (x,y,1) → (x+tx,y+ty,1). In two dimensions the value of H is generally maintained at 1 for simplicity. Here, we are capable to represent this translation transformation in matrix form as:

242_Relation between 2-D Euclidean (Cartesian) system and Homogeneous coordinate system 2.png

 (x',y',1)=(x,y,1)

P'h=Ph.Tv    

Here P'h and Ph   demonstrate here object points in Homogeneous Coordinates and Tv is termed as homogeneous transformation matrix for translation. Consequently, P'h, the new coordinates of a transformed object, can be determined by multiplying earlier object coordinate matrix, Ph, along with the transformation matrix for translation Tv.

The benefit of initiating the matrix form of translation is to simplify the operations on complicated objects which are, we can now build complicated transformations by multiplying the basic matrix transformations. Such process is termed as concatenation of matrices and the resulting matrix is frequently referred as the composite transformation matrix.


Related Discussions:- Relation between 2-d euclidean system and homogeneous system

Homogeneous coordinate systems - 2-d and 3-d transformations, Homogeneous C...

Homogeneous Coordinate Systems - 2-d and 3-d transformations Suppose P(x,y) be any point in 2-D Euclidean (Cartesian) system. In HC System, we add a third coordinate to a poin

Multimedia entertainment, Multimedia Entertainment: The field of ente...

Multimedia Entertainment: The field of entertainment uses multimedia extensively. One of the earliest and the most popular applications of multimedia are for games. Multimedi

Light sources - polygon rendering and ray tracing methods, Light Sources - ...

Light Sources - polygon rendering and ray tracing methods Light Sources are key parts in any ray traced scene, since without them; there would be no rays to trace. Light sour

Cohen sutherland algorithm - 2d clipping algorithms, Cohen Sutherland algor...

Cohen Sutherland algorithm Point clipping is very simple.  All you need to check is whether a point is inside the window extremes in x- and y-directions.  For line clipping sev

Cases for digital differential analyzer algorithm, Cases for Digital Differ...

Cases for Digital Differential Analyzer Algorithm 1)  If in case 1, we plot the line another way round that is, moving in y direction via 1 unit every time and after that hunt

Vanishing point - viewing transformations, Vanishing Point - Viewing Transf...

Vanishing Point - Viewing Transformations This point is that point at those parallel lines shows to converge and vanish. A practical illustration is a long straight railroad

Homogeneous coordinates, What are the uses of homogeneous coordinates? Conv...

What are the uses of homogeneous coordinates? Convert translation rotation and scaling in homogeneous coordinates. In mathematics homogeneous coordinates introduced by August

Normalization transformation, Find the normalization transformation N, whic...

Find the normalization transformation N, which uses the rectangle W(1, 1); X(5, 3); Y(4, 5) and Z(0, 3) as a window and the normalized deice screen as viewpoint.

Write a c-code which generates a font interactively, Write a C-code which g...

Write a C-code which generates a font interactively.This means after every n mouse clicks, a Bezier curve is generated and then the terminal point of the last drawn Bezier curve is

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd