Relation between 2-d euclidean system and homogeneous system, Computer Graphics

Assignment Help:

Relation between 2-D Euclidean system and Homogeneous coordinate system

Suppose that P(x,y) be any point in 2-D Euclidean system. In HCS, we add a third coordinate to the point. In place of (x,y), all points are represented via a triple (x,y,H) so H≠0; along with the condition as (x1,y1,H1)=(x2,y2,H2) ↔ x1/H1 = x2/H2 ; y1/H1 = y2/H2. In two dimensions the value of H is generally remained at 1 for simplicity. If we take H=0 now, then this presents point at infinity, which is generation of horizons.

The subsequent table demonstrates an association between 2-D Euclidean (Cartesian coordinate) system and Homogeneous coordinate system.

2-D Euclidian System                                        Homogeneous Coordinate System (HCS)

Any point (x,y)                         →                                             (x,y,1)

If (x,y,H) be any point in HCS(such that H≠0);

                                                                                    then (x,y,H)=(x/H,y/H,1), which is

(x/H,y/H)                        ←                                                                     (x,y,H)

Any one point (x,y) → (x+tx,y+ty) in 2-D Euclidian system. By using Homogeneous coordinate system, this translation transformation can be presented as (x,y,1) → (x+tx,y+ty,1). In two dimensions the value of H is generally maintained at 1 for simplicity. Here, we are capable to represent this translation transformation in matrix form as:

242_Relation between 2-D Euclidean (Cartesian) system and Homogeneous coordinate system 2.png

 (x',y',1)=(x,y,1)

P'h=Ph.Tv    

Here P'h and Ph   demonstrate here object points in Homogeneous Coordinates and Tv is termed as homogeneous transformation matrix for translation. Consequently, P'h, the new coordinates of a transformed object, can be determined by multiplying earlier object coordinate matrix, Ph, along with the transformation matrix for translation Tv.

The benefit of initiating the matrix form of translation is to simplify the operations on complicated objects which are, we can now build complicated transformations by multiplying the basic matrix transformations. Such process is termed as concatenation of matrices and the resulting matrix is frequently referred as the composite transformation matrix.


Related Discussions:- Relation between 2-d euclidean system and homogeneous system

Tcp connection, what is the opengl code for tcp connection?

what is the opengl code for tcp connection?

Exceptional cases - orthographic projection, Exceptional cases - Orthograph...

Exceptional cases - Orthographic Projection 1)   We have an Orthographic projection, if f=0, then cot (β) =0 that is β=90 0 . 2)   β =cot-1 (1)=450 and this Oblique projec

Photo editing, Photo Editing Photo-editing programs are paint programs...

Photo Editing Photo-editing programs are paint programs: it just like they comprise several sophisticated functions for altering images and for scheming aspects of the image,

Compare bresenham line generation algorithm with dda, 1. Compare Bresenham...

1. Compare Bresenham line generation with Digital Differential Analyzer line generation. Ans.   Bresenham line generation algorithm is better than Digital Differential Analyze

Computational algorithm for simulating physical system, computational algor...

computational algorithm for simulating the behavior of different physical and mathematical systems Monte Carlo methods are an extensively utilized class of computational algor

Important point for transformation for isometric projection, Important Poin...

Important Points about the Transformation for isometric projection Note: We can also verify such Isometric transformation matrix through checking all the foreshortening fact

Z-buffer algorithm, How to implement z-buffer algorithm using C programming...

How to implement z-buffer algorithm using C programming

Which main components are needed for computer graphics, Can you tell which ...

Can you tell which main components (hardware and software) are needed for computer graphics? Besides the computer, some special devices and software may be needed especially fo

Derive the common transformation of parallel projection, Derive the common ...

Derive the common transformation of parallel projection into the xy-plane in the direction of projection d=aI+bJ+cK. Solution: The common transformation of parallel projection

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd