Related rates of differentiation., Mathematics

Assignment Help:

Related Rates : In this section we will discussed for application of implicit differentiation. 

For these related rates problems usually it's best to just see some problems and see how they work.

Example: Air is pumped in a spherical balloon at a rate of 5 cm3/min. Find out the rate at which the radius of the balloon is raising while the diameter of the balloon is 20 cm.

Solution : The first thing that we'll have to do here is to recognize what information that we've been provided and what we desire to find. Previous to we do that let's notice that both of the volume of the balloon & the radius of the balloon will differ with time and thus are really functions of time, i.e. V (t ) and r (t ) .

We know that air is being pumped in the balloon at a rate of 5 cm3/min. It is the rate on which the volume is raising.  Recall that rates of change are derivatives and thus we know that,

V ′ (t ) = 5

We desire to find out the rate at which the radius is changing.  Again, rates are derivatives and thus it looks like we desire to determine,

                      r′ (t ) = ?            when           r (t ) = d /2= 10 cm

Note that we required converting the diameter to a radius.

Now that we've recognized what we have been given and what we desire to determine we have to relate these two quantities to each of other.  In this case we can relate the volume and the radius along with the formula for the volume of any sphere.

                                                        V (t ) = 4/3 ∏ [r (t )]3

As in the earlier section while we looked at implicit differentiation, typically we will not use the  (t ) part of things in the formulas, however since this is the first time through one of these we will do that to remind ourselves that they are actually functions of t.

Now we don't in fact want a relationship among the volume & the radius.  What we actually desire is a relationship among their derivatives.  We can accomplish this by differentiating both of the sides with respect to t.  In other terms, we will have to do implicit differentiation on the above formula. By doing this we get,

                                                             V ′ = 4 ∏ r 2 r′

Note as well that at this point we went ahead and dropped the (t ) from each terms.  Now all that we have to do is plug in what we know and solve out for what we desire to find.

5 = 4 ∏ (102 ) r′           ⇒ r′ = 1 /80 ∏ cm/min

We can get the units of the derivative through recalling that,

 r′ = dr /dt


Related Discussions:- Related rates of differentiation.

MATH HELP: URGENT, the andersons are buying a new home and need to fence th...

the andersons are buying a new home and need to fence their yard. the yard is 40 ft by 80 ft. each fencing section is 8ft. how many sections will they need?how many posts will they

How much area will it irrigate in 30 minutes , Water in a canal 30 dm wide ...

Water in a canal 30 dm wide and 12 dm deep is flowing with a velocity of 10 km/h. How much area will it irrigate in 30 minutes if 8 cm of standing water is required for irrigation?

Statistics, A researcher is investigating the effectiveness of a new medica...

A researcher is investigating the effectiveness of a new medication for lowering blood pressure for individuals with systolic pressure greater than 140. For this population, systol

representative value or an extreme value, A population forms a normal dist...

A population forms a normal distribution with a mean of μ=80 and a standard deviation of o=15. For every samples, compute the z-score for the sample mean and determine whether the

Variation and proportion, i am not getting what miss has taught us please w...

i am not getting what miss has taught us please will you will help me in my studies

How many different words can be formed out from varanasi, Determine how man...

Determine how many different words can be formed out of the letters of the word VARANASI? Ans: 720 different words can be formed out of the letters of the word VARANASI.

Probability - applications of integrals, Probability - Applications of inte...

Probability - Applications of integrals In this final application of integrals that we'll be looking at we are going to look at probability.  Previous to actually getting into

Probability, an insurance salesman sells policies to 5 men, all of identica...

an insurance salesman sells policies to 5 men, all of identical age in good health. the probability that a man of this particular age will be alive 20 years hence is 2/3.Find the p

Differance between expanded notation vs. standard notation , Differance bet...

Differance between Expanded Notation vs. Standard Notation ? A number written in expanded notation is broken down into parts just like it is in a place-value table. Example

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd