Related rates of differentiation., Mathematics

Assignment Help:

Related Rates : In this section we will discussed for application of implicit differentiation. 

For these related rates problems usually it's best to just see some problems and see how they work.

Example: Air is pumped in a spherical balloon at a rate of 5 cm3/min. Find out the rate at which the radius of the balloon is raising while the diameter of the balloon is 20 cm.

Solution : The first thing that we'll have to do here is to recognize what information that we've been provided and what we desire to find. Previous to we do that let's notice that both of the volume of the balloon & the radius of the balloon will differ with time and thus are really functions of time, i.e. V (t ) and r (t ) .

We know that air is being pumped in the balloon at a rate of 5 cm3/min. It is the rate on which the volume is raising.  Recall that rates of change are derivatives and thus we know that,

V ′ (t ) = 5

We desire to find out the rate at which the radius is changing.  Again, rates are derivatives and thus it looks like we desire to determine,

                      r′ (t ) = ?            when           r (t ) = d /2= 10 cm

Note that we required converting the diameter to a radius.

Now that we've recognized what we have been given and what we desire to determine we have to relate these two quantities to each of other.  In this case we can relate the volume and the radius along with the formula for the volume of any sphere.

                                                        V (t ) = 4/3 ∏ [r (t )]3

As in the earlier section while we looked at implicit differentiation, typically we will not use the  (t ) part of things in the formulas, however since this is the first time through one of these we will do that to remind ourselves that they are actually functions of t.

Now we don't in fact want a relationship among the volume & the radius.  What we actually desire is a relationship among their derivatives.  We can accomplish this by differentiating both of the sides with respect to t.  In other terms, we will have to do implicit differentiation on the above formula. By doing this we get,

                                                             V ′ = 4 ∏ r 2 r′

Note as well that at this point we went ahead and dropped the (t ) from each terms.  Now all that we have to do is plug in what we know and solve out for what we desire to find.

5 = 4 ∏ (102 ) r′           ⇒ r′ = 1 /80 ∏ cm/min

We can get the units of the derivative through recalling that,

 r′ = dr /dt


Related Discussions:- Related rates of differentiation.

Find the height of the building, A building is in the form of a cylinder su...

A building is in the form of a cylinder surrounded by a hemispherical vaulted dome and contains   41(19/21-) cu m of air. If the internal diameter of the building is equal to its t

How to calculate probability of event, Q. How to calculate Probability of e...

Q. How to calculate Probability of event? Ans. What chance do I have to toss the coin and get a head? You might think 50-50, 50%. What about tossing it 5 times and getting

Matrices, Ask qudefination of empty matrixestion #Minimum 100 words accepte...

Ask qudefination of empty matrixestion #Minimum 100 words accepted#

Logarithems , y=x4/4lnx-x4/16 then dy/dx=? Solution) dy/dx=-x^3/4(2/lnx-...

y=x4/4lnx-x4/16 then dy/dx=? Solution) dy/dx=-x^3/4(2/lnx-1)^2.    ^ means power

An amortization, Ahmad borrowed $450000.00 at 3% compounded semi-annually f...

Ahmad borrowed $450000.00 at 3% compounded semi-annually for ten years to buy an apartment. Equal payments are made at the end of every six months. a) Determine the size of the se

Differential Equations, 1.Verify Liouville''s formula for y "-y" - y'' + y ...

1.Verify Liouville''s formula for y "-y" - y'' + y = 0 in (0, 1) ? 2.Find the normalized differential equation which has {x, xex} as its fundamental set. 3.6Find the general soluti

Mod(z-25i)<15, Mod(Z-25i)   Sol) mod (Z-25i) means Z lies in the circumfer...

Mod(Z-25i)   Sol) mod (Z-25i) means Z lies in the circumference of the circle with (0,25) at its centre and radius less then 15. so difference in the max and min value of arg Z is

Geometry, what are the parts of angles

what are the parts of angles

#titldifference between cpm n pert operation research pdfe.., difference be...

difference between cpm n pert operation research pdfepted#

Chapter problem temperature around the globe.., predict whether there is a ...

predict whether there is a relationship between the mean January temperatures of a city in North America and the city''s position west of the prime meridian.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd