Reduce equaction to quadratic using substitution, Algebra

Assignment Help:

Solve 2 x10 - x5 - 4 = 0 .

Solution

We can reduce this to quadratic in form using the substitution,

u = x5

u 2  = x10

By using this substitution the equation becomes,

2u 2 - u - 4 = 0

It doesn't factor and thus we'll have to use the quadratic formula on it.  From the quadratic formula the solutions are,

U= (1 ±   √33 )/4

Now, to get back to x's we are going to require decimals values for these so,

u = (1 + √33 )/4 = 1.68614                       u = (1 -√33 )/4= -1.18614

Now, using the substitution to get back to x's gives the following,

u= 1.68614          x5  = 1.68614       x = (1.68614)(1/5)   = 1.11014

u =-1.18614       x5  = -1.18614        x =( -1.18614)(1/5)   = -1.03473

Certainly we had to employ a calculator to get the last answer for these. It is one of the cause that you don't tend to see too several of these done in Algebra class. The work and/or answers tend to be a little messy.


Related Discussions:- Reduce equaction to quadratic using substitution

Equation in slope-intercept form, Find an equation of the line containing e...

Find an equation of the line containing each pair of points. Write your final answer in slope-intercept form. (-2,0) and (0,-7)

Slope intercept, how do you do equations for sloe intercept?

how do you do equations for sloe intercept?

Student, the weight of a body above the surface of earth varies inversely w...

the weight of a body above the surface of earth varies inversely with the square of the distance from the center of the earth. if maria weighs 125 pounds when she is on the surface

Real estate equation, 50 units for 580 dollars a month, rent increase 625....

50 units for 580 dollars a month, rent increase 625.00 now only 47 units occupied

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd