Recursive and iterative handling of a binary search tree, Data Structure & Algorithms

Assignment Help:

This section prescribes additional exercise with the recursive and iterative handling of a binary search tree.

Adding to the Binary Search Tree Recursively

Add implementations to recursively add to the binary search tree. The public addRecursively method should examine the tree's root, placing the new addition there if the root is zero; otherwise,addRecursively will call the private method addRecursively, passing it the non-zero root of the tree. The recursive method will compare the new addition's data to that located at the current root. If the data is less and the subsequent left pointer is zero, the new addition can be stored there; otherwise, the function calls itself recursively, passing the non-zero left pointer to itself. Data in the new addition greater than that in the current root is handled similarly with the right pointer.

Displaying the Binary Search Tree Iteratively

Add the implementation to iteratively write the binary search tree. The iteration will move down the tree, following successive left pointers. The first node with zero for a left pointer may be written, as there can be no data which comes before it. The iteration which moves down the tree will need to stack each current pointer so that it may unwind the downward traversal of the tree. Use theTemplateNode, TemplateList and TemplateStack implementations from the previous homework for this purpose. Starting with a current pointer initialized to the root of the tree, replace the current pointer with each non-zero left pointer encountered; push current on the stack before each replacement. When a left pointer of zero is encountered, display that node's data and move to the right. When a right pointer of zero is assigned to current, pop to move back up the tree, write a node, then move right again. Become familiar with this behavior in a diagram before coding.

Destroying the Binary Search Tree

Implement a recursive erase method. Add the following prototypes to the tree's class definition.

public:

voideraseRecursively

                  (void);

private:

voideraseRecursively

                  (node* currentRoot);

The bodies of these methods will be identical in form to those for writing recursively.

Add the following code to the else clause in the main function. Note the use of the recursive erase and add methods and the iterative write.

cout<< "Press to continue...\n";

cin.get();

customerTree.eraseRecursively();

cout<< "Recursive Tree Listing After Erase:" <

infile.clear();  // restore stream state so I/O may proceed

infile.seekg (0);  // seek "get" to file start (byte #0)

while (!infile.eof())

customerTree.addRecursively (new node(infile));  // recursive add

cout<< "Iterative Listing of Recursive Additions\n";

customerTree.writeIteratively (cout);

infile.close();

Note that one of the erase methods could be called by the destructor to perform its function as well.

Test the algorithms thoroughly by modifying the data file several times.


Related Discussions:- Recursive and iterative handling of a binary search tree

Tradeoff between space and time complexity, We might sometimes seek a trade...

We might sometimes seek a tradeoff among space & time complexity. For instance, we may have to select a data structure which requires a lot of storage to reduce the computation tim

Linked lists, what are grounded header linked lists?

what are grounded header linked lists?

Acyclic graph, Tree is a widely used data structure employed for representi...

Tree is a widely used data structure employed for representing several problems. We studied tree like a special case of acyclic graph. Though, rooted trees are most prominent of al

Algorithm to count number of nodes, Write an algorithm to count number of n...

Write an algorithm to count number of nodes in the circular linked list.                            Ans. Counting No of Nodes in Circular List Let list be a circular h

Algorithm for linear search, Here,  m represents the unordered array of ele...

Here,  m represents the unordered array of elements n  represents number of elements in the array and el  represents the value to be searched in the list Sep 1: [Initialize]

Insertion of a node into a binary search tree, A binary search tree is cons...

A binary search tree is constructed through the repeated insertion of new nodes in a binary tree structure. Insertion has to maintain the order of the tree. The value to the lef

Rules for abstract data type-tree, null(nil) = true                     // ...

null(nil) = true                     // nil refer for empty tree null(fork(e, T, T'))= false   //  e : element , T and T are two sub tree leaf(fork(e, nil, nil)) = true leaf(

Signals, How does cpu''s part tming and controls generate and controls sign...

How does cpu''s part tming and controls generate and controls signls in computer?

Algorithm for similar binary tree, Q. The two Binary Trees are said to be s...

Q. The two Binary Trees are said to be similar if they are both empty or if they are both non- empty and left and right sub trees are similar. Write down an algorithm to determine

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd