Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Recognizes the absolute extrema & relative extrema for the following function.
f ( x ) = x2 on [-1, 2]
Solution: As this function is simple enough to graph let's do that. Though, we only want the graph on the interval [-1,2]. Here is the graph,
Note as well that we utilized dots at the end of the graph to remind us that the graph ends at these points.
Now we can identify the extrema from the graph. It looks like we've got a relative & absolute minimum of zero at x = 0 and an absolute maximum of four at x = 2 . Note as well that x = -1 is not a relative maximum as it is at the ending point of the interval.
This function doesn't contain any relative maximums.
As we saw in the previous example functions do not have to have relative extrema. It is entirely possible for a function to not have a relative maximum and/or a relative minimum.
to difine trigonometric ratios of an angle,is it necessary that the initial ray of the angle must be positive x-axis?
1. For a function f : Z → Z, let R be the relation on Z given by xRy iff f(x) = f(y). (a) Prove that R is an equivalence relation on Z. (b) If for every x ? Z, the equivalenc
25 algebraic equations that equal 36
Two trains were traveling in opposite directions, moving away from one another. One train was moving at 5 miles per hour. The other train was moving at 6 miles per hour. They were
A compound fraction is a fraction that has other fractions inside its numerator or denominator. Here's an example: While compound fractions can look really hairy, they're r
The temperature at midnight was 4°F. Through 2 A.M. it had dropped 9°F. What was the temperature at 2 A.M.? If the temperature is only 4° and drops 9°, it goes below zero. It d
i just have one question i need help on for my geometry homework
Need a problem solved
1. A machine comprises of three transformers A, B and C. Such machine may operate if at least 2 transformers are working. The probability of each transformer working is given as di
Proof for Properties of Dot Product Proof of u → • (v → + w → ) = u → • v → + u → • w → We'll begin with the three vectors, u → = (u 1 , u 2 , ...
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd