Recognize the intervals for function h ( x ) = 3x5 - 5x3 + 3, Mathematics

Assignment Help:

For the given function recognize the intervals where the function is increasing and decreasing and the intervals where the function is concave up & concave down. Utilizes this information to sketch the graph.

                                             h ( x ) = 3x5 - 5x3 + 3

Solution

we are going to require the first two derivatives therefore let's get those first.

h′ ( x ) = 15x4 -15x2  = 15x2 ( x -1) ( x + 1)

h′′ ( x ) = 60x3 - 30x = 30x (2x2  -1)

Let's begin with the increasing/decreasing information .

For this function there are three critical points: x = -1 , x = 0 , and x = 1 .  Below is the number line for the increasing/decreasing information.

647_concave5.png

Thus, it looks like we've got the given intervals of increasing & decreasing.

Increasing: - ∞ < x < -1 and 1 < x < ∞

Decreasing: -1 < x < 0, 0 < x < 1

Note as well that from the first derivative test we can also say that x = -1 is a relative maximum & that x = 1 is a relative minimum.  Also x = 0 is neither relative minimum nor maximum.

Now let's get the intervals where the function is concave up & concave down.  If you think regarding it this procedure is almost identical to the procedure we use to recognize the intervals of increasing & decreasing.  The only difference is that we will be using the second derivative rather than the first derivative.

The first thing that we have to do is recognize the possible inflection points. These will be where there the second derivative will be zero or doesn't present. The second derivative in this case is a polynomial and therefore will exist everywhere.  It will be zero at the given points.

                                  x = 0, x = ±1/√2 = ±0.7071

 

As with the increasing & decreasing part we can draw a number line up and utilizes these points to divide the number line in regions.  Within these regions we know that the second derivative will always contain the similar sign as these three points are the only places where the function might change sign. Thus, all that we have to do is pick a point from each of region and plug it into the second derivative.  Then the second derivative will have that sign within the whole region from which the point came from

Following is the number line for this second derivative.

1746_concave3.png

Therefore, it looks like we've got the given intervals of concavity.

Concave Up : -  1/√2 < x < 0 and 1/√2   < x < ∞

Concave Down :- ∞ < x < -  1/√2  and  0 < x <  1/√2  

It also means that

x = 0, x = ±1/√2  = ±0.7071

are all inflection points.

All these information can be a little overwhelming while going to sketch the graph. The first thing which we have to do is get some starting points. The critical points & inflection points are good starting points.  Therefore, first graph these points.  Now, begin to the left & begin graphing the increasing/decreasing information. As we graph this we will ensure that the concavity information matches up with what we're graphing.

By using all this information to sketch the graph gives the following graph.

1270_concave2.png


Related Discussions:- Recognize the intervals for function h ( x ) = 3x5 - 5x3 + 3

find the slope and the y intercept of the line - geometry, 1. Find the slo...

1. Find the slope and the y-intercept of the line whose equation is 5x + 6y = 7. 2. Find the equation of the line that is parallel to 2x + 5y = 7 and passes through the mid poin

Bounded intervals, Let a and b be fixed real numbers such that a ...

Let a and b be fixed real numbers such that a The open interval (a, b): We define an open interval (a, b) with end points a and b as a set of all r

Example of quadratic polynomial, Factor following.                    x ...

Factor following.                    x 2 - 20 x + 100 Solution In this case we've got three terms & it's a quadratic polynomial.  Notice down as well that the constant

Trigonometry, sin^2alpha *sec^2beta +tan^2 beta *cos^2alpha=sin^2alpha+tan^...

sin^2alpha *sec^2beta +tan^2 beta *cos^2alpha=sin^2alpha+tan^2 beta

Partial Differential Equations Walter A Strauss, Find the full fourier Seri...

Find the full fourier Series of e^x on (-l,l)in its real and complex forms. (hint:it is convenient to find the complex form first)

Properties of the indefinite integral, Properties of the Indefinite Integra...

Properties of the Indefinite Integral 1.  ∫ k f ( x ) dx = k ∫ f ( x ) dx where k refer for any number.  Thus, we can factor multiplicative constants out of indefinite integral

Comparison-types of word problems related to subtraction, Comparison - the...

Comparison - the difference between two groups or numbers, namely, how much one is greater than the other, how much more is in one group than in the other. (e.g., if Munna has

Evaluate the mean of temperatures, Evaluate the mean of temperatures: ...

Evaluate the mean of temperatures: Example: Given the subsequent temperature readings, 573, 573, 574, 574, 574, 574, 575, 575, 575, 575, 575, 576, 576, 576, 578 So

Calculus level 2, the first question should be done using the website given...

the first question should be done using the website given (www.desmos.com/calculator )and another good example to explain using the graph ( https://www.desmos.com/calculator/ydimzr

Method of disks or the method of rings, Method of disks or the method of ri...

Method of disks or the method of rings One of the simple methods for getting the cross-sectional area is to cut the object perpendicular to the axis of rotation.  Carrying out

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd