Recognize the intervals for function h ( x ) = 3x5 - 5x3 + 3, Mathematics

Assignment Help:

For the given function recognize the intervals where the function is increasing and decreasing and the intervals where the function is concave up & concave down. Utilizes this information to sketch the graph.

                                             h ( x ) = 3x5 - 5x3 + 3

Solution

we are going to require the first two derivatives therefore let's get those first.

h′ ( x ) = 15x4 -15x2  = 15x2 ( x -1) ( x + 1)

h′′ ( x ) = 60x3 - 30x = 30x (2x2  -1)

Let's begin with the increasing/decreasing information .

For this function there are three critical points: x = -1 , x = 0 , and x = 1 .  Below is the number line for the increasing/decreasing information.

647_concave5.png

Thus, it looks like we've got the given intervals of increasing & decreasing.

Increasing: - ∞ < x < -1 and 1 < x < ∞

Decreasing: -1 < x < 0, 0 < x < 1

Note as well that from the first derivative test we can also say that x = -1 is a relative maximum & that x = 1 is a relative minimum.  Also x = 0 is neither relative minimum nor maximum.

Now let's get the intervals where the function is concave up & concave down.  If you think regarding it this procedure is almost identical to the procedure we use to recognize the intervals of increasing & decreasing.  The only difference is that we will be using the second derivative rather than the first derivative.

The first thing that we have to do is recognize the possible inflection points. These will be where there the second derivative will be zero or doesn't present. The second derivative in this case is a polynomial and therefore will exist everywhere.  It will be zero at the given points.

                                  x = 0, x = ±1/√2 = ±0.7071

 

As with the increasing & decreasing part we can draw a number line up and utilizes these points to divide the number line in regions.  Within these regions we know that the second derivative will always contain the similar sign as these three points are the only places where the function might change sign. Thus, all that we have to do is pick a point from each of region and plug it into the second derivative.  Then the second derivative will have that sign within the whole region from which the point came from

Following is the number line for this second derivative.

1746_concave3.png

Therefore, it looks like we've got the given intervals of concavity.

Concave Up : -  1/√2 < x < 0 and 1/√2   < x < ∞

Concave Down :- ∞ < x < -  1/√2  and  0 < x <  1/√2  

It also means that

x = 0, x = ±1/√2  = ±0.7071

are all inflection points.

All these information can be a little overwhelming while going to sketch the graph. The first thing which we have to do is get some starting points. The critical points & inflection points are good starting points.  Therefore, first graph these points.  Now, begin to the left & begin graphing the increasing/decreasing information. As we graph this we will ensure that the concavity information matches up with what we're graphing.

By using all this information to sketch the graph gives the following graph.

1270_concave2.png


Related Discussions:- Recognize the intervals for function h ( x ) = 3x5 - 5x3 + 3

Complex analysis test, Can anyone help with my exam. I have 8 questions to ...

Can anyone help with my exam. I have 8 questions to do which is due on 02-14-13

Example of integrals involving root - integration technique, Evaluate the f...

Evaluate the following integral. ∫ (x+2 / 3√(x-3)) (dx) Solution Occasionally while faced with an integral that consists of a root we can make use of the following subs

Calculate the amount of money a person has left after death, When Ms. Jones...

When Ms. Jones retired, she received a lump sum of $1,000,000 from her pension plan.  She then invested this sum in an annuity account that would pay her an equal amount at the end

Find their present ages of son and father, When the son will be as old as t...

When the son will be as old as the father today their ages will add up to 126 years. When the father was old as the son is today, their ages add upto 38 years.  Find their present

#titl., class 10 Q.trigonometric formula of 1 term

class 10 Q.trigonometric formula of 1 term

speed of the truck , A man travels 600km partly by train and partly by tru...

A man travels 600km partly by train and partly by truck. If he  covers 120km by train and the rest by truck, it takes him eight hours. But, if he travels 200km by train and the res

Inverse tangent, Inverse Tangent : Following is the definition of the inve...

Inverse Tangent : Following is the definition of the inverse tangent.  y = tan -1 x     ⇔ tan y = x                     for            -∏/2 ≤ y ≤ ?/2 Again, we have a limi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd